Advanced Search
DSpace@MIT

Conceptual Design of an Annular-Fueled Superheat Boiling Water Reactor

Research and Teaching Output of the MIT Community

Show simple item record

dc.contributor.author Ko, Yu-Chih
dc.contributor.author Kazimi, Mujid S.
dc.contributor.other Advanced Nuclear Power Technology Program (Massachusetts Institute of Technology) en_US
dc.date.accessioned 2012-12-06T21:25:11Z
dc.date.available 2012-12-06T21:25:11Z
dc.date.issued 2010-10
dc.identifier.uri http://hdl.handle.net/1721.1/75281
dc.description.abstract The conceptual design of an annular-fueled superheat boiling water reactor (ASBWR) is outlined. The proposed design, ASBWR, combines the boiler and superheater regions into one fuel assembly. This ensures good neutron moderation throughout the reactor core. A single fuel design is used in the core. Each annular fuel element, or fuel tube, is cooled externally by boiling water and internally by steam. Fuel pellets are made of low enrichment UO2, somewhat higher than the traditional BWR fuel enrichment. T91 and Inconel 718 are selected as candidates for the cladding material in view of their excellent physical properties and corrosion resistance. The fuel-cladding gap is filled with pressurized helium gas, like the existing lighter water reactor fuels. The ASBWR fuel assembly contains sixty annular fuel elements and one square water rod (occupying a space of four fuel elements) in an 8 by 8 square array. Annular separators and steam dryers are utilized and located above the core in the reactor vessel. Reactor internal pumps are used to adjust the core flow rate. Cruciform control rods are used to control the reactivity of the core, but more of them may be needed than a traditional BWR in view of the harder spectrum. The major design constraints have been identified and evaluated in this work. The ASBWR is found promising to achieve a power density of 50 kW/L and meet all the main safety requirements. This includes a limit on the minimum critical heat flux ratio, maximum fuel and cladding operating temperatures, and appropriate stability margin against density wave oscillations. At the expected superheated steam of 520 °C, the plant efficiency is above 40%, which is substantially greater than the efficiency of 33 to 35% that today’s generation of LWRs can achieve. In addition to generating electricity, the ASBWR may also be useful for liquid fuel production or other applications that require high temperature steam. The uncertainties about this design include the performance of cladding materials under irradiation, the attainment of desirable heat transfer ratio between the external and􀀃internal coolant channels throughout the fuel cycle, and the response to the traditional transients prescribed as design basis events. en_US
dc.description.sponsorship U.S. Nuclear Regulatory Commission en_US
dc.description.sponsorship Masdar Institute of Science and Technology en_US
dc.publisher Massachusetts Institute of Technology. Center for Advanced Nuclear Energy Systems. Advanced Nuclear Power Program en_US
dc.relation.ispartofseries MIT-ANP;TR-130
dc.title Conceptual Design of an Annular-Fueled Superheat Boiling Water Reactor en_US
dc.type Technical Report en_US
dc.contributor.mitauthor Ko, Yu-Chih
dc.contributor.mitauthor Kazimi, Mujid S.
dspace.orderedauthors Ko, Yu-Chih; S. Kazimi, Mujid en_US


Files in this item

Name Size Format Description
ANP-130.pdf 14.06Mb PDF ANP-130.pdf

This item appears in the following Collection(s)

Show simple item record

TechReports