Show simple item record

dc.contributor.advisorRamesh Raskar.en_US
dc.contributor.authorGupta, Otkristen_US
dc.contributor.otherMassachusetts Institute of Technology. Dept. of Architecture. Program in Media Arts and Sciences.en_US
dc.date.accessioned2013-01-23T19:47:54Z
dc.date.available2013-01-23T19:47:54Z
dc.date.copyright2012en_US
dc.date.issued2012en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/76518
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2012.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 85-89).en_US
dc.description.abstractThis thesis aims at discovering algorithms to recover the geometry of hidden objects from tertiary diffuse scattering, given time of flight information. We focus on using ultra high speed capture of photons to accurately determine information about distance light travelled and using it to infer hidden geometry. We aim at investigating issues such as the feasibility, uniqueness(in solution domain) and invertibility of this problem. We also aim at formulating the forward and inverse theory of secondary and tertiary diffuse scattering using ideas from tomography. We aim at developing tomography based approaches and sparsity based methods to recover 3D shapes of objects "around the corner". We analyze multi-bounce propagation of light in an unknown hidden volume and demonstrate that the reflected light contains sufficient information to recover the 3D structure of the hidden scene. We formulate the forward and inverse theory of secondary and tertiary scattering reflection using ideas from energy front propagation and tomography. We show that using careful choice of approximations, such as Fresnel approximation, greatly simplifies this problem and the inversion can be achieved via a backpropagation process. We provide a theoretical analysis of the invertibility, uniqueness and choices of space-time-angle dimensions using synthetic examples. We show that a 2D streak camera can be used to discover and reconstruct hidden geometry. Using a 1D high speed time of flight camera, we show that our method can be used recover 3D shapes of objects "around the corner".en_US
dc.description.statementofresponsibilityby Otkrist Gupta.en_US
dc.format.extent89 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectArchitecture. Program in Media Arts and Sciences.en_US
dc.titleAlgorithms for Reconstruction of hidden 3D shapes using diffused reflectionsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)
dc.identifier.oclc823865155en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record