Show simple item record

dc.contributor.authorWang, Y.
dc.contributor.authorPhon, T. H.
dc.contributor.authorPfeifer, B.
dc.contributor.authorAjikumar, Parayil Kumaran
dc.contributor.authorXiao, Wen-Hai
dc.contributor.authorTyo, Keith E. J.
dc.contributor.authorSimeon, Fritz
dc.contributor.authorTyo, Keith E. J.
dc.contributor.authorLeonard, Effendi
dc.contributor.authorMucha, Oliver
dc.contributor.authorStephanopoulos, Gregory
dc.date.accessioned2013-10-01T14:05:59Z
dc.date.available2013-10-01T14:05:59Z
dc.date.issued2010-09
dc.date.submitted2010-08
dc.identifier.issn0036-8075
dc.identifier.issn1095-9203
dc.identifier.urihttp://hdl.handle.net/1721.1/81256
dc.descriptionAuthor Manuscript February 6, 2011en_US
dc.description.abstractTaxol (paclitaxel) is a potent anticancer drug first isolated from the Taxus brevifolia Pacific yew tree. Currently, cost-efficient production of Taxol and its analogs remains limited. Here, we report a multivariate-modular approach to metabolic-pathway engineering that succeeded in increasing titers of taxadiene—the first committed Taxol intermediate—approximately 1 gram per liter (~15,000-fold) in an engineered Escherichia coli strain. Our approach partitioned the taxadiene metabolic pathway into two modules: a native upstream methylerythritol-phosphate (MEP) pathway forming isopentenyl pyrophosphate and a heterologous downstream terpenoid–forming pathway. Systematic multivariate search identified conditions that optimally balance the two pathway modules so as to maximize the taxadiene production with minimal accumulation of indole, which is an inhibitory compound found here. We also engineered the next step in Taxol biosynthesis, a P450-mediated 5α-oxidation of taxadiene to taxadien-5α-ol. More broadly, the modular pathway engineering approach helped to unlock the potential of the MEP pathway for the engineered production of terpenoid natural products.en_US
dc.language.isoen_US
dc.publisherAmerican Association for the Advancement of Science (AAAS)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1126/science.1191652en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alike 3.0en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/en_US
dc.sourcePubMed Centralen_US
dc.titleIsoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia colien_US
dc.typeArticleen_US
dc.identifier.citationAjikumar, P. K., W.-H. Xiao, K. E. J. Tyo, Y. Wang, F. Simeon, E. Leonard, O. Mucha, T. H. Phon, B. Pfeifer, and G. Stephanopoulos. “Isoprenoid Pathway Optimization for Taxol Precursor Overproduction in Escherichia coli.” Science 330, no. 6000 (September 30, 2010): 70-74.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.mitauthorAjikumar, Parayil Kumaranen_US
dc.contributor.mitauthorXiao, Wen-Haien_US
dc.contributor.mitauthorTyo, Keith E. J.en_US
dc.contributor.mitauthorSimeon, Fritzen_US
dc.contributor.mitauthorLeonard, Effendien_US
dc.contributor.mitauthorMucha, Oliveren_US
dc.contributor.mitauthorStephanopoulos, Gregoryen_US
dc.relation.journalScienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsAjikumar, P. K.; Xiao, W.-H.; Tyo, K. E. J.; Wang, Y.; Simeon, F.; Leonard, E.; Mucha, O.; Phon, T. H.; Pfeifer, B.; Stephanopoulos, G.en_US
dc.identifier.orcidhttps://orcid.org/0000-0001-6909-4568
mit.licenseOPEN_ACCESS_POLICYen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record