Abstract:
The criterion of h-positivity corresponds to the criterion that a polynomial representation of the general linear group of V is a sum of tensor products of symmetric powers of V. Expanding the iterated exponential function as a power series yields coefficients whose positivity implies the h-positivity of the characteristic of the symmetric group character whose value on the permutation w is the number of labeled forests with c(w) vertices, where c(w) is the number of cycles of w. Another example of an h-positive symmetric function is the characteristic of the top homology of the even-ranked subposet of the partition lattice. In this case, the positive coefficients of the characteristic refine the tangent number E₂nâ‚‹₁ into sums of powers of two.

Description:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2001.Includes bibliographical references (p. 65).