Show simple item record

dc.contributor.advisorPiotr Indyk.en_US
dc.contributor.authorMahabadi, Sepidehen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2013-11-18T19:19:21Z
dc.date.available2013-11-18T19:19:21Z
dc.date.copyright2013en_US
dc.date.issued2013en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/82408
dc.descriptionThesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (p. 53-55).en_US
dc.description.abstractThis thesis investigates two variants of the approximate nearest neighbor problem. First, motivated by the recent research on diversity-aware search, we investigate the k-diverse near neighbor reporting problem. The problem is defined as follows: given a query point q, report the maximum diversity set S of k points in the ball of radius r around q. The diversity of a set S is measured by the minimum distance between any pair of points in S (the higher, the better). We present two approximation algorithms for the case where the points live in a d-dimensional Hamming space. Our algorithms guarantee query times that are sub-linear in n and only polynomial in the diversity parameter k, as well as the dimension d. For low values of k, our algorithms achieve sub-linear query times even if the number of points within distance r from a query q is linear in n. To the best of our knowledge, these are the first known algorithms of this type that offer provable guarantees. In the other variant, we consider the approximate line near neighbor (LNN) problem. Here, the database consists of a set of lines instead of points but the query is still a point. Let L be a set of n lines in the d dimensional euclidean space Rd. The goal is to preprocess the set of lines so that we can answer the Line Near Neighbor (LNN) queries in sub-linear time. That is, given the query point ... we want to report a line ... (if there is any), such that ... for some threshold value r, where ... is the euclidean distance between them. We start by illustrating the solution to the problem in the case where there are only two lines in the database and present a data structure in this case. Then we show a recursive algorithm that merges these data structures and solve the problem for the general case of n lines. The algorithm has polynomial space and performs only a logarithmic number of calls to the approximate nearest neighbor subproblem.en_US
dc.description.statementofresponsibilityby Sepideh Mahabadi.en_US
dc.format.extent55 p.en_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleApproximate nearest neighbor and its many variantsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc862112830en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record