dc.contributor.author | Boriskina, Svetlana V. | |
dc.contributor.author | Ghasemi, Hadi | |
dc.contributor.author | Chen, Gang | |
dc.date.accessioned | 2014-02-19T14:47:16Z | |
dc.date.available | 2014-02-19T14:47:16Z | |
dc.date.issued | 2013-10 | |
dc.identifier.issn | 13697021 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/84998 | |
dc.description.abstract | Physical mechanisms unique to plasmonic materials, which can be exploited for the existing and emerging applications of plasmonics for renewable energy technologies, are reviewed. The hybrid nature of surface plasmon (SP) modes – propagating surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs) – as collective photon–electron oscillations makes them attractive candidates for energy applications. A high density of optical states in the vicinity of plasmonic structures enhances light absorption and emission, enables localized heating, and drives near-field heat exchange between hot and cold surfaces. SP modes channel the energy of absorbed photons directly to the free electrons, and the generated hot electrons can be utilized in thermoelectric, photovoltaic and photo-catalytic platforms. The advantages and disadvantages of using plasmonics over conventional technologies for solar energy and waste heat harvesting are discussed, and areas where plasmonics is expected to lead to performance improvements not achievable by other methods are identified. | en_US |
dc.description.sponsorship | United States. Dept. of Energy. Office of Basic Energy Sciences (Solid-State Solar-Thermal Energy Conversion Center Award DE-SC0001299/DE-FG02-09ER46577) | en_US |
dc.description.sponsorship | United States. Dept. of Energy. Office of Basic Energy Sciences (Solid-State Solar-Thermal Energy Conversion Center Grant DE-FG02-02ER45977) | en_US |
dc.description.sponsorship | United States. Dept. of Energy (SunShot Grant 6924527) | en_US |
dc.description.sponsorship | United States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (Grant FA9550-08-1-0407) | en_US |
dc.language.iso | en_US | |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/j.mattod.2013.09.003 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | Elsevier | en_US |
dc.title | Plasmonic materials for energy: From physics to applications | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Boriskina, Svetlana V., Hadi Ghasemi, and Gang Chen. “Plasmonic materials for energy: From physics to applications.” Materials Today 16, no. 10 (October 2013): 375-386. Copyright © 2013 Elsevier Ltd. | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | en_US |
dc.contributor.mitauthor | Boriskina, Svetlana V. | en_US |
dc.contributor.mitauthor | Ghasemi, Hadi | en_US |
dc.contributor.mitauthor | Chen, Gang | en_US |
dc.relation.journal | Materials Today | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dspace.orderedauthors | Boriskina, Svetlana V.; Ghasemi, Hadi; Chen, Gang | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-3968-8530 | |
mit.license | PUBLISHER_POLICY | en_US |
mit.metadata.status | Complete | |