MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
Search 
  • DSpace@MIT Home
  • Center for Brains, Minds & Machines
  • Search
  • DSpace@MIT Home
  • Center for Brains, Minds & Machines
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

Now showing items 1-9 of 9

  • Sort Options:
  • Relevance
  • Title Asc
  • Title Desc
  • Issue Date Asc
  • Issue Date Desc
  • Results Per Page:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Thumbnail

On Invariance and Selectivity in Representation Learning 

Anselmi, Fabio; Rosasco, Lorenzo; Poggio, Tomaso (Center for Brains, Minds and Machines (CBMM), arXiv, 2015-03-23)
We discuss data representation which can be learned automatically from data, are invariant to transformations, and at the same time selective, in the sense that two points have the same representation only if they are one ...
Thumbnail

The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex 

Leibo, Joel Z; Liao, Qianli; Anselmi, Fabio; Poggio, Tomaso (Center for Brains, Minds and Machines (CBMM), bioRxiv, 2015-04-26)
Is visual cortex made up of general-purpose information processing machinery, or does it consist of a collection of specialized modules? If prior knowledge, acquired from learning a set of objects is only transferable to ...
Thumbnail

Computational role of eccentricity dependent cortical magnification 

Poggio, Tomaso; Mutch, Jim; Isik, Leyla (Center for Brains, Minds and Machines (CBMM), arXiv, 2014-06-06)
We develop a sampling extension of M-theory focused on invariance to scale and translation. Quite surprisingly, the theory predicts an architecture of early vision with increasing receptive field sizes and a high resolution ...
Thumbnail

Can a biologically-plausible hierarchy e ectively replace face detection, alignment, and recognition pipelines? 

Liao, Qianli; Leibo, Joel Z; Mroueh, Youssef; Poggio, Tomaso (Center for Brains, Minds and Machines (CBMM), arXiv, 2014-03-27)
The standard approach to unconstrained face recognition in natural photographs is via a detection, alignment, recognition pipeline. While that approach has achieved impressive results, there are several reasons to be ...
Thumbnail

Learning An Invariant Speech Representation 

Evangelopoulos, Georgios; Voinea, Stephen; Zhang, Chiyuan; Rosasco, Lorenzo; Poggio, Tomaso (Center for Brains, Minds and Machines (CBMM), arXiv, 2014-06-15)
Recognition of speech, and in particular the ability to generalize and learn from small sets of labelled examples like humans do, depends on an appropriate representation of the acoustic input. We formulate the problem of ...
Thumbnail

Representation Learning in Sensory Cortex: a theory 

Anselmi, Fabio; Poggio, Tomaso (Center for Brains, Minds and Machines (CBMM), 2014-11-14)
We review and apply a computational theory of the feedforward path of the ventral stream in visual cortex based on the hypothesis that its main function is the encoding of invariant representations of images. A key ...
Thumbnail

Fast, invariant representation for human action in the visual system 

Isik, Leyla; Tacchetti, Andrea; Poggio, Tomaso (Center for Brains, Minds and Machines (CBMM), arXiv, 2016-01-06)
The ability to recognize the actions of others from visual input is essential to humans' daily lives. The neural computations underlying action recognition, however, are still poorly understood. We use magnetoencephalography ...
Thumbnail

A Deep Representation for Invariance And Music Classification 

Zhang, Chiyuan; Evangelopoulos, Georgios; Voinea, Stephen; Rosasco, Lorenzo; Poggio, Tomaso (Center for Brains, Minds and Machines (CBMM), arXiv, 2014-17-03)
Representations in the auditory cortex might be based on mechanisms similar to the visual ventral stream; modules for building invariance to transformations and multiple layers for compositionality and selectivity. In this ...
Thumbnail

Deep Convolutional Networks are Hierarchical Kernel Machines 

Anselmi, Fabio; Rosasco, Lorenzo; Tan, Cheston; Poggio, Tomaso (Center for Brains, Minds and Machines (CBMM), arXiv, 2015-08-05)
We extend i-theory to incorporate not only pooling but also rectifying nonlinearities in an extended HW module (eHW) designed for supervised learning. The two operations roughly correspond to invariance and selectivity, ...

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CommunityBy Issue DateAuthorsTitlesSubjects

My Account

Login

Discover

AuthorPoggio, Tomaso (9)Anselmi, Fabio (4)Rosasco, Lorenzo (4)Evangelopoulos, Georgios (2)Isik, Leyla (2)Leibo, Joel Z (2)Voinea, Stephen (2)Zhang, Chiyuan (2)Liao, Qianli (1)Liao, Qianli (1)... View MoreSubject
Invariance (9)
Machine Learning (5)Computer vision (4)Hierarchy (3)i-theory (2)Theories for Intelligence (2)Audio Representation (1)Computational Theory (1)extended HW module (eHW) (1)Face recognition (1)... View MoreDate Issued2014 (4)2015 (3)2016 (1)Has File(s)Yes (9)

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.