MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
Search 
  • DSpace@MIT Home
  • Center for Brains, Minds & Machines
  • Search
  • DSpace@MIT Home
  • Center for Brains, Minds & Machines
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

Now showing items 1-10 of 14

  • Sort Options:
  • Relevance
  • Title Asc
  • Title Desc
  • Issue Date Asc
  • Issue Date Desc
  • Results Per Page:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Thumbnail

Robust Estimation of 3D Human Poses from a Single Image 

Wang, Chunyu; Wang, Yizhou; Lin, Zhouchen; Yuille, Alan L.; Gao, Wen (Center for Brains, Minds and Machines (CBMM), arXiv, 2014-06-10)
Human pose estimation is a key step to action recognition. We propose a method of estimating 3D human poses from a single image, which works in conjunction with an existing 2D pose/joint detector. 3D pose estimation is ...
Thumbnail

The Secrets of Salient Object Segmentation 

Li, Yin; Hou, Xiaodi; Koch, Christof; Rehg, James M.; Yuille, Alan L. (Center for Brains, Minds and Machines (CBMM), arXiv, 2014-06-13)
In this paper we provide an extensive evaluation of fixation prediction and salient object segmentation algorithms as well as statistics of major datasets. Our analysis identifies serious design flaws of existing salient ...
Thumbnail

Seeing What You’re Told: Sentence-Guided Activity Recognition In Video 

Siddharth, Narayanaswamy; Barbu, Andrei; Siskind, Jeffrey Mark (Center for Brains, Minds and Machines (CBMM), arXiv, 2014-05-29)
We present a system that demonstrates how the compositional structure of events, in concert with the compositional structure of language, can interplay with the underlying focusing mechanisms in video action recognition, ...
Thumbnail

Unsupervised learning of clutter-resistant visual representations from natural videos 

Liao, Qianli; Leibo, Joel Z; Poggio, Tomaso (Center for Brains, Minds and Machines (CBMM), arXiv, 2015-04-27)
Populations of neurons in inferotemporal cortex (IT) maintain an explicit code for object identity that also tolerates transformations of object appearance e.g., position, scale, viewing angle [1, 2, 3]. Though the learning ...
Thumbnail

The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex 

Leibo, Joel Z; Liao, Qianli; Anselmi, Fabio; Poggio, Tomaso (Center for Brains, Minds and Machines (CBMM), bioRxiv, 2015-04-26)
Is visual cortex made up of general-purpose information processing machinery, or does it consist of a collection of specialized modules? If prior knowledge, acquired from learning a set of objects is only transferable to ...
Thumbnail

Computational role of eccentricity dependent cortical magnification 

Poggio, Tomaso; Mutch, Jim; Isik, Leyla (Center for Brains, Minds and Machines (CBMM), arXiv, 2014-06-06)
We develop a sampling extension of M-theory focused on invariance to scale and translation. Quite surprisingly, the theory predicts an architecture of early vision with increasing receptive field sizes and a high resolution ...
Thumbnail

Detect What You Can: Detecting and Representing Objects using Holistic Models and Body Parts 

Chen, Xianjie; Mottaghi, Roozbeh; Liu, Xiaobai; Fidler, Sanja; Urtasun, Raquel; e.a. (Center for Brains, Minds and Machines (CBMM), arXiv, 2014-06-10)
Detecting objects becomes difficult when we need to deal with large shape deformation, occlusion and low resolution. We propose a novel approach to i) handle large deformations and partial occlusions in animals (as examples ...
Thumbnail

Learning An Invariant Speech Representation 

Evangelopoulos, Georgios; Voinea, Stephen; Zhang, Chiyuan; Rosasco, Lorenzo; Poggio, Tomaso (Center for Brains, Minds and Machines (CBMM), arXiv, 2014-06-15)
Recognition of speech, and in particular the ability to generalize and learn from small sets of labelled examples like humans do, depends on an appropriate representation of the acoustic input. We formulate the problem of ...
Thumbnail

A Review of Relational Machine Learning for Knowledge Graphs 

Nickel, Maximilian; Murphy, Kevin; Tresp, Volker; Gabrilovich, Evgeniy (Center for Brains, Minds and Machines (CBMM), arXiv, 2015-03-23)
Relational machine learning studies methods for the statistical analysis of relational, or graph-structured, data. In this paper, we provide a review of how such statistical models can be “trained” on large knowledge graphs, ...
Thumbnail

A Deep Representation for Invariance And Music Classification 

Zhang, Chiyuan; Evangelopoulos, Georgios; Voinea, Stephen; Rosasco, Lorenzo; Poggio, Tomaso (Center for Brains, Minds and Machines (CBMM), arXiv, 2014-17-03)
Representations in the auditory cortex might be based on mechanisms similar to the visual ventral stream; modules for building invariance to transformations and multiple layers for compositionality and selectivity. In this ...
  • 1
  • 2

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CommunityBy Issue DateAuthorsTitlesSubjects

My Account

Login

Discover

AuthorPoggio, Tomaso (7)Rosasco, Lorenzo (4)Yuille, Alan L. (4)Anselmi, Fabio (2)Chen, Xianjie (2)Evangelopoulos, Georgios (2)Leibo, Joel Z (2)Liao, Qianli (2)Nickel, Maximilian (2)Voinea, Stephen (2)... View MoreSubject
Machine Learning (14)
Artificial Intelligence (5)Invariance (5)Computer vision (4)Object Recognition (3)Hierarchy (2)Theories for Intelligence (2)Action Recognition (1)Associative Memory (1)Audio Representation (1)... View MoreDate Issued2014 (6)2015 (6)2016 (1)Has File(s)Yes (14)

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.