MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
Search 
  • DSpace@MIT Home
  • Center for Brains, Minds & Machines
  • Search
  • DSpace@MIT Home
  • Center for Brains, Minds & Machines
  • Search
JavaScript is disabled for your browser. Some features of this site may not work without it.

Search

Show Advanced FiltersHide Advanced Filters

Filters

Use filters to refine the search results.

Now showing items 1-8 of 8

  • Sort Options:
  • Relevance
  • Title Asc
  • Title Desc
  • Issue Date Asc
  • Issue Date Desc
  • Results Per Page:
  • 5
  • 10
  • 20
  • 40
  • 60
  • 80
  • 100
Thumbnail

The Secrets of Salient Object Segmentation 

Li, Yin; Hou, Xiaodi; Koch, Christof; Rehg, James M.; Yuille, Alan L. (Center for Brains, Minds and Machines (CBMM), arXiv, 2014-06-13)
In this paper we provide an extensive evaluation of fixation prediction and salient object segmentation algorithms as well as statistics of major datasets. Our analysis identifies serious design flaws of existing salient ...
Thumbnail

Human-Machine CRFs for Identifying Bottlenecks in Holistic Scene Understanding 

Mottaghi, Roozbeh; Fidler, Sanja; Yuille, Alan L.; Urtasun, Raquel; Parikh, Devi (Center for Brains, Minds and Machines (CBMM), arXiv, 2014-06-15)
Recent trends in image understanding have pushed for holistic scene understanding models that jointly reason about various tasks such as object detection, scene recognition, shape analysis, contextual reasoning, and local ...
Thumbnail

Unsupervised learning of clutter-resistant visual representations from natural videos 

Liao, Qianli; Leibo, Joel Z; Poggio, Tomaso (Center for Brains, Minds and Machines (CBMM), arXiv, 2015-04-27)
Populations of neurons in inferotemporal cortex (IT) maintain an explicit code for object identity that also tolerates transformations of object appearance e.g., position, scale, viewing angle [1, 2, 3]. Though the learning ...
Thumbnail

A role for recurrent processing in object completion: neurophysiological, psychophysical and computational evidence. 

Tang, Hanlin; Buia, Calin; Madsen, Joseph R.; Anderson, William S.; Kreiman, Gabriel (Center for Brains, Minds and Machines (CBMM), arXiv, 2014-04-26)
Recognition of objects from partial information presents a significant challenge for theories of vision because it requires spatial integration and extrapolation from prior knowledge. We combined neurophysiological recordings ...
Thumbnail

Semantic Part Segmentation using Compositional Model combining Shape and Appearance 

Wang, Jianyu; Yuille, Alan L. (Center for Brains, Minds and Machines (CBMM), arXiv, 2015-06-08)
In this paper, we study the problem of semantic part segmentation for animals. This is more challenging than standard object detection, object segmentation and pose estimation tasks because semantic parts of animals often ...
Thumbnail

Detect What You Can: Detecting and Representing Objects using Holistic Models and Body Parts 

Chen, Xianjie; Mottaghi, Roozbeh; Liu, Xiaobai; Fidler, Sanja; Urtasun, Raquel; e.a. (Center for Brains, Minds and Machines (CBMM), arXiv, 2014-06-10)
Detecting objects becomes difficult when we need to deal with large shape deformation, occlusion and low resolution. We propose a novel approach to i) handle large deformations and partial occlusions in animals (as examples ...
Thumbnail

Parsing Semantic Parts of Cars Using Graphical Models and Segment Appearance Consistency 

Lu, Wenhao; Lian, Xiaochen; Yuille, Alan L. (Center for Brains, Minds and Machines (CBMM), arXiv, 2014-06-13)
This paper addresses the problem of semantic part parsing (segmentation) of cars, i.e.assigning every pixel within the car to one of the parts (e.g.body, window, lights, license plates and wheels). We formulate this as a ...
Thumbnail

Seeing is Worse than Believing: Reading People’s Minds Better than Computer-Vision Methods Recognize Actions 

Barbu, Andrei; Barrett, Daniel P.; Chen, Wei; Narayanaswamy, Siddharth; Xiong, Caiming; e.a. (2015-12-10)
We had human subjects perform a one-out-of-six class action recognition task from video stimuli while undergoing functional magnetic resonance imaging (fMRI). Support-vector machines (SVMs) were trained on the recovered ...

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CommunityBy Issue DateAuthorsTitlesSubjects

My Account

Login

Discover

AuthorYuille, Alan L. (5)Fidler, Sanja (2)Mottaghi, Roozbeh (2)Urtasun, Raquel (2)Anderson, William S. (1)Barbu, Andrei (1)Barrett, Daniel P. (1)Buia, Calin (1)Chen, Wei (1)Chen, Xianjie (1)... View MoreSubject
Object Recognition (8)
Vision (4)Artificial Intelligence (3)Machine Learning (3)Compositional Models (1)Computer vision (1)Fixation Prediction (1)Hierarchy (1)Neuroscience (1)Scene Recognition (1)... View MoreDate Issued2014 (5)2015 (3)Has File(s)Yes (8)

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.