Search
Now showing items 1-10 of 22
Unsupervised learning of clutter-resistant visual representations from natural videos
(Center for Brains, Minds and Machines (CBMM), arXiv, 2015-04-27)
Populations of neurons in inferotemporal cortex (IT) maintain an explicit code for object identity that also tolerates transformations of object appearance e.g., position, scale, viewing angle [1, 2, 3]. Though the learning ...
The Invariance Hypothesis Implies Domain-Specific Regions in Visual Cortex
(Center for Brains, Minds and Machines (CBMM), bioRxiv, 2015-04-26)
Is visual cortex made up of general-purpose information processing machinery, or does it consist of a collection of specialized modules? If prior knowledge, acquired from learning a set of objects is only transferable to ...
Learning Real and Boolean Functions: When Is Deep Better Than Shallow
(Center for Brains, Minds and Machines (CBMM), arXiv, 2016-03-08)
We describe computational tasks - especially in vision - that correspond to compositional/hierarchical functions. While the universal approximation property holds both for hierarchical and shallow networks, we prove that ...
Theory I: Why and When Can Deep Networks Avoid the Curse of Dimensionality?
(Center for Brains, Minds and Machines (CBMM), arXiv, 2016-11-23)
[formerly titled "Why and When Can Deep – but Not Shallow – Networks Avoid the Curse of Dimensionality: a Review"]
The paper reviews and extends an emerging body of theoretical results on deep learning including the ...
Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex
(Center for Brains, Minds and Machines (CBMM), arXiv, 2016-04-12)
We discuss relations between Residual Networks (ResNet), Recurrent Neural Networks (RNNs) and the primate visual cortex. We begin with the observation that a shallow RNN is exactly equivalent to a very deep ResNet with ...
View-tolerant face recognition and Hebbian learning imply mirror-symmetric neural tuning to head orientation
(Center for Brains, Minds and Machines (CBMM), arXiv, 2016-06-03)
The primate brain contains a hierarchy of visual areas, dubbed the ventral stream, which rapidly computes object representations that are both specific for object identity and relatively robust against identity-preserving ...
Streaming Normalization: Towards Simpler and More Biologically-plausible Normalizations for Online and Recurrent Learning
(Center for Brains, Minds and Machines (CBMM), arXiv, 2016-10-19)
We systematically explored a spectrum of normalization algorithms related to Batch Normalization (BN) and propose a generalized formulation that simultaneously solves two major limitations of BN: (1) online learning and ...
Musings on Deep Learning: Properties of SGD
(Center for Brains, Minds and Machines (CBMM), 2017-04-04)
[previously titled "Theory of Deep Learning III: Generalization Properties of SGD"] In Theory III we characterize with a mix of theory and experiments the generalization properties of Stochastic Gradient Descent in ...
3D Object-Oriented Learning: An End-to-end Transformation-Disentangled 3D Representation
(2017-12-31)
We provide more detailed explanation of the ideas behind a recent paper on “Object-Oriented Deep Learning” [1] and extend it to handle 3D inputs/outputs. Similar to [1], every layer of the system takes in a list of ...
Theory II: Landscape of the Empirical Risk in Deep Learning
(Center for Brains, Minds and Machines (CBMM), arXiv, 2017-03-30)
Previous theoretical work on deep learning and neural network optimization tend to focus on avoiding saddle points and local minima. However, the practical observation is that, at least for the most successful Deep ...