Show simple item record

dc.contributor.authorBiros, G.
dc.contributor.authorChambers, J.
dc.contributor.authorGhattas, O.
dc.contributor.authorKordonowy, D.
dc.contributor.authorAllaire, Douglas L.
dc.contributor.authorWillcox, Karen E.
dc.date.accessioned2014-12-01T17:46:13Z
dc.date.available2014-12-01T17:46:13Z
dc.date.issued2012-06
dc.identifier.issn18770509
dc.identifier.urihttp://hdl.handle.net/1721.1/91962
dc.description.abstractA self-aware aerospace vehicle can dynamically adapt the way it performs missions by gathering information about itself and its surroundings and responding intelligently. Achieving this DDDAS paradigm enables a revolutionary new generation of self-aware aerospace vehicles that can perform missions that are impossible using current design, flight, and mission planning paradigms. To make self-aware aerospace vehicles a reality, fundamentally new algorithms are needed that drive decision-making through dynamic response to uncertain data, while incorporating information from multiple modeling sources and multiple sensor fidelities.In this work, the specific challenge of a vehicle that can dynamically and autonomously sense, plan, and act is considered. The challenge is to achieve each of these tasks in real time executing online models and exploiting dynamic data streams–while also accounting for uncertainty. We employ a multifidelity approach to inference, prediction and planning an approach that incorporates information from multiple modeling sources, multiple sensor data sources, and multiple fidelities.en_US
dc.language.isoen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.procs.2012.04.130en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/en_US
dc.sourceElsevieren_US
dc.titleDynamic Data Driven Methods for Self-aware Aerospace Vehiclesen_US
dc.typeArticleen_US
dc.identifier.citationAllaire, D., G. Biros, J. Chambers, O. Ghattas, D. Kordonowy, and K. Willcox. “Dynamic Data Driven Methods for Self-Aware Aerospace Vehicles.” Procedia Computer Science 9 (2012): 1206–1210.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.mitauthorAllaire, Douglas L.en_US
dc.contributor.mitauthorWillcox, Karen E.en_US
dc.relation.journalProcedia Computer Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsAllaire, D.; Biros, G.; Chambers, J.; Ghattas, O.; Kordonowy, D.; Willcox, K.en_US
dc.identifier.orcidhttps://orcid.org/0000-0003-2156-9338
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record