Show simple item record

dc.contributor.advisorJoseph A. Paradiso.en_US
dc.contributor.authorAldrich, Matthew (Matthew Henry)en_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Architecture. Program in Media Arts and Sciences.en_US
dc.date.accessioned2015-03-05T15:57:38Z
dc.date.available2015-03-05T15:57:38Z
dc.date.copyright2014en_US
dc.date.issued2014en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/95866
dc.descriptionThesis: Ph. D., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2014.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 119-125).en_US
dc.description.abstractLighting, and its emergence as a digital and networked medium, represents an ideal platform for conducting research on both sensor and human-derived methods of control. Notably, solid-state lighting makes possible the control of the intensity, spatial, and color attributes of lighting in real-time. This technology provides an excellent opportunity to conduct new experiments designed to study how we perceive, judge, and subsequently control illumination. For example, given the near-infinite variation of possible lighting attributes, how might one design an intuitive control system? Moreover, how can one reconcile the objective nature of sensor-based controls with the subjective impressions of humans? How might this approach guide the design of lighting controls and ultimately guide the design of lighting itself? These questions are asked with the benefit of hindsight. Simple control schemes using sliders, knobs, dials, and motion sensors currently in use fail to anticipate human understanding of the controls and the possible effects that changes in illumination will have upon us. In this work, the problem of how humans interact with this new lighting medium is cast as a human-computer interaction. I describe the design and validation of a natural interface for lighting by abstracting the manifold lighting parameters into a simpler set of controls. Conceptually, this "simpler set" is predicated on the theory that we are capable of discerning the similarities and differences between lighting arrangements (scenes). I hypothesize that this natural ordering (a metric space in a latent multidimensional basis) can be quantitatively extracted and analyzed. First, in a series of controlled experiments, I show how one can derive this mapping and I demonstrate, using empirical evidence, how future sensor networks will eventually emulate our subjective impressions of lighting. Second, using data obtained in a user-study, I quantitatively derive performance estimates of my proposed lighting user interface, and statistically contrast these performance results with those obtained using a traditional interface comprised of sliders and buttons. I demonstrate that my approach enables the user to attain their illumination goals while substantially reducing task-time and fatigue.en_US
dc.description.statementofresponsibilityby Matthew Henry Aldrich.en_US
dc.format.extent125 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectArchitecture. Program in Media Arts and Sciences.en_US
dc.titleExperiential lighting : development and validation of perception-based lighting controlsen_US
dc.title.alternativeDevelopment and validation of perception-based lighting controlsen_US
dc.typeThesisen_US
dc.description.degreePh. D.en_US
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)
dc.identifier.oclc904051315en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record