Show simple item record

dc.contributor.advisorTomás Palacios.en_US
dc.contributor.authorMackin, Charles Edwarden_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science.en_US
dc.date.accessioned2015-07-17T19:49:27Z
dc.date.available2015-07-17T19:49:27Z
dc.date.copyright2014en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/97815
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, February 2015.en_US
dc.descriptionCataloged from PDF version of thesis. "February 2015."en_US
dc.descriptionIncludes bibliographical references.en_US
dc.description.abstractThis work presents a model for electrolyte-gated graphene field-effect transistors (EGFETs) that incorporates the effects of the double layer capacitance and the quantum capacitance of graphene. The model is validated through experimental graphene EGFETs, which were fabricated and measured to provide experimental data and extract graphene EGFET parameters such as mobility, minimum carrier concentration, interface capacitance, contact resistance, and effective charged impurity concentration. The proposed graphene EGFET model accurately determines a number of properties necessary for circuit design such as current-voltage characteristics, transconductance, output resistance, and intrinsic gain. The model can also be used to optimize the design of EGFETs. For example, simulated and experimental results show that avoiding the practice of partial channel passivation enhances the transconductance of graphene EGFETs. Graphene EGFETs are fabricated for pH sensing. The location of the Dirac point is measured for pH concentrations varying from 4 to 10. In this range, graphene EGFETs are shown to produce -50.8 mV/pH sensitivity. Graphene EGFETs are also fabricated for use in a real-time polymerase chain reaction (RTPCR) system. RTPCR is run successfully to identify DNA segments thought responsible for the metabolism of clopidogrel, a widely prescribed antiplatelet medication. The graphene EGFETs, however, failed to sense an increase in DNA concentration. Further optimization of the PCR mix is required to ensure that increased DNA concentration lowers the PCR mix pH without rendering the DNA polymerase ineffective. Lastly, graphene EGFETs fabricated for electrogenic cell sensing using the optimized parameters from the newly developed graphene EGFET current-voltage model. Hippocampal mouse neurons were cultured on top of the graphene EGFETs in attempt record action potentials.en_US
dc.description.statementofresponsibilityby Charles Edward Mackin.en_US
dc.format.extent55 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectElectrical Engineering and Computer Science.en_US
dc.titleElectrolyte-gated graphene field-effect transistors : modeling and applicationsen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.identifier.oclc913218267en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record