Show simple item record

dc.contributor.advisorRamesh Raskar.en_US
dc.contributor.authorSatat, Guyen_US
dc.contributor.otherMassachusetts Institute of Technology. Department of Architecture. Program in Media Arts and Sciences.en_US
dc.date.accessioned2015-09-17T19:00:09Z
dc.date.available2015-09-17T19:00:09Z
dc.date.copyright2015en_US
dc.date.issued2015en_US
dc.identifier.urihttp://hdl.handle.net/1721.1/98620
dc.descriptionThesis: S.M., Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2015.en_US
dc.descriptionCataloged from PDF version of thesis.en_US
dc.descriptionIncludes bibliographical references (pages 75-84).en_US
dc.description.abstractIn this thesis we demonstrate novel methods to overcome optical scattering in order to resolve information about hidden scenes, in particular for biomedical applications. Imaging through scattering media has long been a challenge, as scattering corrupts scenes in a non-invertible way. The use of near-visible optical spectrum for biomedical purposes has many advantages, such as optical contrast, optical resolution and nonionizing radiation. Particularly, it has important applications in biomedical imaging, such as sub-dermal imaging for diagnostics, screening and monitoring conditions. We demonstrate methods to overcome and use scattering in order to recover scene parameters. In particular we demonstrate a method for locating and classifying fluorescent markers hidden behind turbid layers using ultrafast time-resolved measurements with a sparse-based optimization framework. This novel method has applications in remote sensing and in-vivo fluorescence lifetime imaging. Another method is demonstrated to resolve blood flow speed within skin tissue. This method is based on a computational photography technique and coherent illumination. This method can be applied in diagnosis and monitoring of burns, wounds, prostheses and cosmetics. A particularly important application of this technology is analysis of diabetic ulcers, which is the main cause for non-traumatic amputations in India. The suggested prototype is suitable for assisting clinicians in assessing the wound healing process. The methods developed in this thesis using ultrafast time-resolved measurements, sparsity-based optimization and computational photography can spur research and applications in biomedical imaging, skin conditions diagnosis and more general modalities of imaging through scattering media.en_US
dc.description.statementofresponsibilityby Guy Satat.en_US
dc.format.extent84 pagesen_US
dc.language.isoengen_US
dc.publisherMassachusetts Institute of Technologyen_US
dc.rightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission.en_US
dc.rights.urihttp://dspace.mit.edu/handle/1721.1/7582en_US
dc.subjectArchitecture. Program in Media Arts and Sciences.en_US
dc.titleImaging through scatteringen_US
dc.typeThesisen_US
dc.description.degreeS.M.en_US
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)
dc.identifier.oclc920474552en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record