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18. Convolution


18.1. Superposition of infinitesimals: the convolution integral. 
The system response of an LTI system to a general signal can be re­
constructed explicitly from the unit impulse response. 

To see how this works, start with an LTI system represented by a 
linear differential operator L with constant coefficients. The system 
response to a signal f(t) is the solution to Lx = f(t), subject to some 
specified initial conditions. To make things uniform it is common to 
specify “rest” initial conditions: x(t) = 0 for t < 0. 

We will approach this general problem by decomposing the signal 
into small packets. This means we partition time into intervals of 
length say �t: t0 = 0, t1 = �t, t2 = 2�t, and generally tk = k�T . 
The kth packet is the null signal (i.e. has value zero) except between 
t = tk and t = tk+1, where it coincides with f(t). Write fk (t) for the 
kth packet. Then f(t) is the sum of the fk (t)’s. 

Now by superposition the system response (with rest initial condi­
tions) to f(t) is the sum of the system responses to the fk (t)’s sepa­
rately. 

The next step is to estimate the system response to a single packet, 
say fk (t). Since fk(t) is concentrated entirely in a small neighborhood 
of tk , it is well approximated as a rate by a multiple of the delta function 
concentrated at tk , β(t − tk ). The multiple should be chosen so that 
the cumulative totals match up; that is, it should be the integral under 
the graph of fk (t), which is itself well approximated by f(tk)�t. Thus 
we replace fk (t) by 

f(tk )(�t)β(t − tk ). 

The system response to this signal, a multiple of a shift of the unit 
impulse, is the same multiple of the same shift of the weight function 
(= unit impulse response): 

f(tk )(�t)w(t − tk ). 

By superposition, adding up these packet responses over the packets 
which occur before the given time t gives the system response to the 
signal f(t) at time t. As �t � 0 this sum approximates an integral 
taken over time between time zero and time t. Since the symbol t is 
already in use, we need to use a different symbol for the variable in 
the integral; let’s use the Greek equivalent of t, θ (“tau”). The tk ’s get 
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replaced by θ in the integral, and �t by dθ :

� t 

(1) x(t) = f(θ)w(t − θ) dθ 
0 

This is a really wonderful formula. Edwards and Penney call it 
“Duhamel’s principle,” but they seem somewhat isolated in this. Per­
haps a better name would be the “superposition integral,” since it is 
no more and no less than an integral expression of the principle of 
superposition. It is commonly called the convolution integral. It 
describes the solution to a general LTI equation Lx = f(t) subject 
to rest initial conditions, in terms of the unit impulse response w(t). 
Note that in evaluating this integral θ is always less than t, so we never 
encounter the part of w(t) where it is zero. 

18.2. Example: the build up of a pollutant in a lake. Every good 
formula deserves a particularly illuminating example, and perhaps the 
following will serve for the convolution integral. We have a lake, and a 
pollutant is being dumped into it, at a certain variable rate f(t). This 
pollutant degrades over time, exponentially. If the lake begins at time 
zero with no pollutant, how much is in the lake at time t > 0? 

The exponential decay is modeled by taking a quantity p of pollutant 
at time θ , and multiplying it by e−a(t−π ) . The number a is the decay 
constant, and t − θ is the time elapsed. We apply this formula to the 
small drip of pollutant added between time θ and time θ + �θ . The 
quantity is p = f(θ)�θ (remember, f(t) is a rate; to get a quantity you 
must multiply by time), so at time t the this drip has been reduced to 
the quantity 

e −a(t−π ) f(θ)�θ 

(assuming t > θ ; if t < θ , this particular drip contributed zero). Now 
we add them up, starting at the initial time θ = 0, and get the convo­
lution integral (1), which here is 

� t 

(2) x(t) = f(θ)e −a(t−π ) dθ. 
0 

We found our way straight to the convolution integral, without ever 
mentioning differential equations. But we can also solve this problem 
by setting up a differential equation for x(t). The amount of this chem­
ical in the lake at time t+�t is the amount at time t, minus the fraction 
that decayed, plus the amount newly added: 

x(t + �t) = x(t) − ax(t)�t + f(t)�t 



� 
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Forming the limit as �t � 0, we obtain 

(3) ẋ + ax = f (t), x(0) = 0. 

We conclude that (2) gives us the solution with rest initial conditions. 

In this first order case we can recover this expression by using the 
method of variation of parameter, or, equivalently, of integrating fac-

at :tors. (3) can be solved using the integrating factor e

x(t) = e −at e atf (t) dt. 

If we reexpress this using a definite integral, we have to introduce a 
new variable to run from 0 to t—call it θ : 

� t 

x(t) = e −at e aπ f (θ ) dθ 
0 

Choosing 0 as the lower limit of integration enforces the initial condition 
x(0) = 0. Now t is constant as far as the integral is concerned, so we can 
bring the factor e−at inside the integral. Using the laws of exponentials, 
we find 

� t 

x(t) = e −a(t−π ) f (θ ) dθ, 
0 

which is (2). 

An interesting case occurs if a = 0. Then the pollutant doesn’t decay 
at all, and so it just builds up in the lake. At time t the total amount 
in the lake is just the total amount dumped in up to that time, namely 

� t 

f (t) dt, 
0 

which is consistent with (2). 

18.3. Convolution as a product. The integral (1) is called the con­
volution of w(t) and f (t), and written using an asterisk: 

� t 

(4) w(t) � f (t) = w(t − θ )f (θ ) dθ, t > 0. 
0 

Thus: 

Theorem. The solution to an LTI equation Lx = f (t), of any order, 
with rest initial conditions, is given by 

x(t) = w(t) � f (t), 

where w(t) is the unit impulse response. 


