Solutions to Recitation 21 Problems

1. At $(1,0)$, it's a vertical arrow downward; at $(0,1)$, it's a horizontal arrow to the right; at $(-1,0)$, it's a vertical arrow upward; at $(0,-1)$, it's a horizontal arrow to the left. And the arrow length gets longer as we go outward from the origin. So we can see that a curve that connects these arrows must be a circle going in clockwise direction. So the curve that passes through $(1,0)$ is the circle $x^{2}+y^{2}=1$.

Differentiating $\dot{x}=y$, we get $\ddot{x}=\dot{y}=-x$, so the equation is $\ddot{x}+x=0$. The general solution is $C_{1} \cos (t)+$ $C_{2} \sin (t)$. Since the initial value of x is 1 and of $\dot{x}=y=0$, we see that $x=\cos (t)$. So $y=\dot{x}=-\sin (t)$. The graph of $\mathbf{u}(t)$ looks exactly as drawn in the sketch on the left. The red graph is $x(t)$ and green one is $y(t)$.

2. Let $y=\dot{x}$. Then $\dot{y}=\ddot{x}=-\frac{1}{2} \dot{x}-\frac{17}{16} x=-\frac{1}{2} y-\frac{17}{16} x$. So the system is

$$
\left\{\begin{array}{l}
\dot{x}=y \\
\dot{y}=-\frac{17}{16} x-\frac{1}{2} y
\end{array} .\right.
$$

Note that we have successfully described $\dot{\mathbf{u}}$ in terms of \mathbf{u}. The roots of the characteristic equation of the 2 nd order equation is $-\frac{1}{4} \pm i$, so the general solutions are

$$
C_{1} e^{-t / 4} \cos (t)+C_{2} e^{-t / 4} \sin (t)
$$

Because $x(0)=1, C_{1}=1$. Taking derivative, $-\frac{1}{4}+C_{2}=0$, so $C_{2}=\frac{1}{4}$. So we must have

$$
\begin{aligned}
& x=e^{-t / 4} \cos (t)+\frac{1}{4} e^{-t / 4} \sin (t) \\
& y=\dot{x}=-\frac{17}{16} e^{-t / 4} \sin (t)
\end{aligned}
$$

Sketch of $x(t)$ is in red and of $y(t)$ is in green below. The resulting sketch of the trajectory $\mathbf{u}(t)$ is on the right. The graph of $\mathbf{u}(t)$ is a spiral inward as $t \rightarrow \infty$ and it is on the positive x-axis every time t is an integer multiple of 2π. The velocity is $\dot{x}=y$, so at each point of the trajectory, the velocity is represented by the y-coordinate.

3.

$$
(x+2 y),\left(\begin{array}{cc}
x & y \\
2 x & 2 y
\end{array}\right),\binom{a x+b y}{c x+d y},\left(\begin{array}{ll}
a x+b y & a u+b v \\
c x+d y & c u+d v
\end{array}\right)
$$

