Solutions to Recitation 13 Problems

Before going into the problems, just for your information, we give a slightly different way of looking at the weight function and its equivalent IVP. One key property about the delta function is

$$
\int_{-\epsilon}^{\epsilon} f(t) \delta(t) d t=f(0)
$$

for any reasonable function f and for any ϵ. So to solve $m \dot{x}+b x=\delta(t)$, we integrate both sides, and we see

$$
m[x(\epsilon)-x(-\epsilon)]+b \int_{-\epsilon}^{\epsilon} x=1
$$

Because x is a bounded function, the second term on the left hand side must go to zero as ϵ goes to zero, which means that $x(0+)$ must be $\frac{1}{m}$ more than $x(0-)=0$. So the weight function is the answer to $m \dot{x}+b x=0$ with $x(0)=\frac{1}{m}$.
Similarly, if we have a second-order equation $m \ddot{x}+b \dot{x}+k x=\delta(t)$, then integrating, we see

$$
m[\dot{x}(\epsilon)-\dot{x}(-\epsilon)]+b[x(\epsilon)-x(-\epsilon)]+k \int_{-\epsilon}^{\epsilon} x=1
$$

Again, the last term goes to zero as we let $\epsilon \rightarrow 0$. We have a choice here, but we can let the first term contribute the 1 , meaning that $x(0+)=x(0-)=0$ but $\dot{x}(0+)=\dot{x}(0-)+\frac{1}{m}=\frac{1}{m}$. So to obtain the weight function, we want to solve the IVP with $x(0)=0$ and $\dot{x}(0)=\frac{1}{m}$. Of course, in this second order case, the equation is a force equation, so we have a physical explanation: a unit impulse $1=\int \delta(t) d t$ should give a unit change in the momentum $m v=m \dot{x}$, which is consistent with above.

1. The general solution is

$$
C_{1} e^{-t} \cos (t)+C_{2} e^{-t} \sin (t)
$$

We want the solution with $x(0)=0$ and $\dot{x}(0)=1$, so we must have $C_{1}=0$ and $C_{2} e^{-0} \cos (0)=1$, so $C_{2}=1$. So the weight function is $u(t) e^{-t} \sin (t)$. It's an oscillating function with rapidly decreasing amplitude. The sketch is the left one of the below.

2. The answer is

$$
f(t) *\left(e^{-t} \sin (t)\right)=\int_{0}^{t} f(u) e^{-(t-u)} \sin (t-u) d u=\int_{0}^{t} f(t-u) e^{-u} \sin (u) d u
$$

When $f(t)=e^{-t}$, we have

$$
f(t) *\left(e^{-t} \sin (t)\right)=\int_{0}^{t} e^{u-t} e^{-u} \sin (u) d u=e^{-t} \int_{0}^{t} \sin (u) d u=e^{-t}-e^{-t} \cos (t)
$$

Again, this is an oscillating function with decreasing amplitude (it always stays positive). The sketch is given above (the second one).
3. Because the system response is $\int f(u) w(t-u) d u$, we see that this is also nonnegative for $t>0$ (because we are starting in the rest initial condition, the system is zero for $t \leq 0$).
4. Because $a \neq b$,

$$
\int_{0}^{t} e^{a u} e^{b t-b u} d u=e^{b t} \frac{1}{a-b}\left(e^{a t-b t}-1\right)=\frac{e^{a t}-e^{b t}}{a-b}
$$

5. Now, we have

$$
\int_{0}^{t} e^{a u} e^{a t-a u} d u=e^{a t} \int_{0}^{t} 1 d u=t e^{a t}
$$

6. If the weight function is $u(t)=u(t) \cdot 1$, so the function 1 is the solution to the IVP with $m \dot{x}+b x=0$ and $x(0)=\frac{1}{m}$. So $m=1$ and $b=0$. So the equation was $\dot{x}=0$.
For the next one, the given condition should have been weight function equaling to $u(t) 2 e^{-2 t}$. In this case, $x(t)=2 e^{-2 t}$ has the property that $x(0)=2$, so $m=\frac{1}{2}$ (since this is nonzero, we can immediately tell that this weight function doesn't correspond to the second order equation). Now,

$$
\frac{1}{2} \cdot\left(-4 e^{-2 t}\right)+2 b e^{-2 t}=0
$$

implies $b=1$, so the original equation was $\frac{1}{2} \dot{x}+x=0$.

The below is the answer to I. 19 of Problem Set 4.

3D-1. Solve $\ddot{y}+2 \dot{y}+y=\delta(t)+u(t-1), y(0-)=0, \dot{y}(0-)=1$.
Write $p(D)=D^{2}+2 D+I$.
Our plan: find the solution to $p(D) x=\delta(t)$ with rest initial conditions; find the solution to $p(D) x=u(t-1)$ with rest initial conditions; find the solution to $p(D) x=0$ with the given initial conditions; and add up the three functions. By superposition this gives the answer.
(i) Let's find the unit step response. This is the solution to $p(D) x=1$ with rest initial conditions. $x_{p}=1$. The characteristic polynomial has the repeated root -1 , so $x_{h}=\left(c_{1} t+c_{2}\right) e^{-t}$. $\dot{x}_{h}=\left(-c_{1} t+\left(c_{1}-c_{2}\right)\right) e^{-t}$. $x_{h}(0)=c_{2}, \dot{x}_{h}(0)=c_{1}-c_{2}$. We want $x_{h}(0)=-1$ and $\dot{x}_{h}(0)=0$, so that with $x=x_{p}+x_{h}, x(0)=0$ and $\dot{x}(0)=0$. This gives $c_{2}=-1$ and $c_{1}=-1$, so for $t>0$ the unit step response is $x(t)=u(t)\left(1-(t+1) e^{-t}\right)$. [Check this!]
(ii) The unit impulse response can be found in the same way, or by differentiating the step response: $w(t)=$ $u(t) t e^{-t}$. For $t>0$ this is also the solution of $p(D) x=0, x(0)=0, \dot{x}(0)=1$. So the initial condition and the $\delta(t)$ in the signal contribute identical terms to the solution.
(iii) The solution to $p(D) x=u(t-1)$ with rest initial conditions is the step response delayed by one time unit (by time independence): substitute $(t-1)$ for t in the equation for the step response: $x(t)=u(t-1)\left(1-t e^{1-t}\right)$. (iv) For $t<0$, we have the "initial" (maybe "terminal" would be a better term!) condition $y(0)=0$, $\dot{y}(0)=1$. The homogeneous solution with this initial condition is $t e^{-t}$
(v) Putting all this together by superposition, we get

$$
y=(u(t)+1) t e^{-t}+u(t-1)\left(1-t e^{1-t}\right)
$$

(vi) In case format this is

$$
y= \begin{cases}t e^{-t} & \text { if } t<0 \\ 2 t e^{-t} & \text { if } 0<t<1 \\ 2 t e^{-t}+\left(1-t e^{1-t}\right) & \text { if } t>1\end{cases}
$$

which coincides with the solution in the Exercises.
3D-2. Solve $\ddot{y}+y=r(t), y(0-)=0, \dot{y}(0-)=1$, where $r(t)= \begin{cases}1, & 0<t<\pi \\ 0, & \text { otherwise }\end{cases}$
This can be done in various ways.
(i) First solve $\ddot{x}+x=1$ with initial condition $x(0)=0, \dot{x}(0)=1 . x_{p}=1$, so we want $x_{h}(0)=-1$ and $\dot{x}_{h}(0)=1$. $x_{h}=-\cos t+\sin t$ works, so $x=1-\cos t+\sin t$.
(ii) For this function, $x(\pi)=2$, and $\dot{x}=\sin t+\cos t$ so $\dot{x}(\pi)=-1$.
(iii) So now we want to solve $\ddot{x}+x=0, x(\pi)=2, \dot{x}(\pi)=-1 . x=c_{1} \cos t+c_{2} \sin t, \dot{x}=-c_{1} \sin t+c_{2} \cos t$, $x(\pi)=-c_{1}, \dot{x}(\pi)=-c_{2}$, so we take $c_{1}=-2$ and $c_{2}=1: x=-2 \cos t+\sin t$.
(iv) Putting this together,

$$
y= \begin{cases}\sin t & \text { if } t<0 \\ 1-\cos t+\sin t & \text { if } 0<t<\pi \\ -2 \cos t+\sin t & \text { if } t>\pi\end{cases}
$$

again agreeing with the solution in the Exercises.

