Solutions to Recitation 17 Problems

1. For (i),
$$F(s) = \frac{1}{s^2 + 1} + \frac{s}{s^2 + 4}$$
, so poles are located at $\pm i, \pm 2i$.
For (ii), $F(s) = \frac{1}{s} + \frac{1}{(s+1)^2 + 1}$, so poles are at $0, -1 \pm i$.
For (iii), $F(s) = \frac{4e^{-100s}}{s} + \frac{1}{s+1}$, so poles are at $0, -1$.

2. For (i), for example, $F(s) = \frac{1}{s-1} + \frac{1}{s+1}$ will give us the desired pole diagram, so the corresponding f(t) would be $e^t + e^{-t}$. A very "cheap" way of creating a second such function would be to make f(t) discontinuous: i.e. let f(t) as above for all $t \neq 0$ and f(0) = 100,000,000. A slightly more sophisticated way would be to use $F(s) = \frac{1}{s-1} + \frac{2}{s+1}$, which would give us $f(t) = e^t + 2e^{-t}$. An even more complicated way would be to use $F(s) = \frac{1}{(s-1)^2} + \frac{1}{s+1}$. Now for this, $f(t) = te^t + e^{-t}$.

For (ii), we can take $F(s) = \frac{1}{s-i}$, which makes $f(t) = e^{it}$. Note that f(t) in this case cannot be a real-valued function, since the pole diagram is not symmetric around the x-axis. The second candidate can be made just like (i): make it discontinuous, $f(t) = 2e^{it}$, or $f(t) = te^{it}$.

For (iii), since the poles appear in conjugate pairs, we can take $F(s) = \frac{1}{s^2 + \pi^2} + \frac{1}{(s+1)^2 + \pi^2}$, whose corresponding $f(t) = \frac{1}{\pi}\sin(\pi t) + \frac{1}{\pi}e^{-t}\sin(\pi t)$. Again, for the second candidate, we can create discontinuity, adjust the constants in front to something other than $\frac{1}{\pi}$, or use cos instead of sin on one or both of the terms.

3. $h=1\div 5=0.2,\,t_0=0$, so $t_n=n\cdot h=0.2n$. We have $\dot x=1-tx=F(t,x)$. The Euler method approximates the value of x by assuming that the derivative stays constant for the period of h, i.e. $x_{n+1}=x_n+h\cdot F(x_n,t_n)$ (remember $F(x_n,t_n)$ is the value of the derivative at t_n). So now we can fill out the table:

ſ				T /:	1.5/:
	n	t_n	x_n	$F(t_n,x_n)$	$hF(t_n,x_n)$
	0	0	0	1	0.2
	1	0.2	0.2	0.96	0.192
ĺ	2	0.4	0.392	0.843	0.169
ĺ	3	0.6	0.561	0.664	0.133
ĺ	4	0.8	0.694	0.445	0.089
	5	1.0	0.783		

This is a linear equation, with $\rho=e^{t^2/2}$, so the precise answer is $e^{-t^2/2}\int_0^t e^{u^2/2}du$ (note that this automatically satisfies the initial condition). If you use a calculator to compute x(1) numerically, we get 0.725, so Euler method produces an 8% error.

1