Solutions to Recitation 17 Problems

1. For (i), $F(s)=\frac{1}{s^{2}+1}+\frac{s}{s^{2}+4}$, so poles are located at $\pm i, \pm 2 i$.

For (ii), $F(s)=\frac{1}{s}+\frac{1}{(s+1)^{2}+1}$, so poles are at $0,-1 \pm i$.
For (iii), $F(s)=\frac{4 e^{-100 s}}{s}+\frac{1}{s+1}$, so poles are at $0,-1$.
2. For (i), for example, $F(s)=\frac{1}{s-1}+\frac{1}{s+1}$ will give us the desired pole diagram, so the corresponding $f(t)$ would be $e^{t}+e^{-t}$. A very "cheap" way of creating a second such function would be to make $f(t)$ discontinuous: i.e. let $f(t)$ as above for all $t \neq 0$ and $f(0)=100,000,000$. A slightly more sophisticated way would be to use $F(s)=\frac{1}{s-1}+\frac{2}{s+1}$, which would give us $f(t)=e^{t}+2 e^{-t}$. An even more complicated way would be to use $F(s)=\frac{1}{(s-1)^{2}}+\frac{1}{s+1}$. Now for this, $f(t)=t e^{t}+e^{-t}$. For (ii), we can take $F(s)=\frac{1}{s-i}$, which makes $f(t)=e^{i t}$. Note that $f(t)$ in this case cannot be a real-valued function, since the pole diagram is not symmetric around the x-axis. The second candidate can be made just like (i): make it discontinuous, $f(t)=2 e^{i t}$, or $f(t)=t e^{i t}$.
For (iii), since the poles appear in conjugate pairs, we can take $F(s)=\frac{1}{s^{2}+\pi^{2}}+\frac{1}{(s+1)^{2}+\pi^{2}}$, whose corresponding $f(t)=\frac{1}{\pi} \sin (\pi t)+\frac{1}{\pi} e^{-t} \sin (\pi t)$. Again, for the second candidate, we can create discontinuity, adjust the constants in front to something other than $\frac{1}{\pi}$, or use cos instead of \sin on one or both of the terms.
3. $h=1 \div 5=0.2, t_{0}=0$, so $t_{n}=n \cdot h=0.2 n$. We have $\dot{x}=1-t x=F(t, x)$. The Euler method approximates the value of x by assuming that the derivative stays constant for the period of h, i.e. $x_{n+1}=x_{n}+h \cdot F\left(x_{n}, t_{n}\right)$ (remember $F\left(x_{n}, t_{n}\right)$ is the value of the derivative at $\left.t_{n}\right)$. So now we can fill out the table:

n	t_{n}	x_{n}	$F\left(t_{n}, x_{n}\right)$	$h F\left(t_{n}, x_{n}\right)$
0	0	0	1	0.2
1	0.2	0.2	0.96	0.192
2	0.4	0.392	0.843	0.169
3	0.6	0.561	0.664	0.133
4	0.8	0.694	0.445	0.089
5	1.0	0.783		

This is a linear equation, with $\rho=e^{t^{2} / 2}$, so the precise answer is $e^{-t^{2} / 2} \int_{0}^{t} e^{u^{2} / 2} d u$ (note that this automatically satisfies the initial condition). If you use a calculator to compute $x(1)$ numerically, we get 0.725 , so Euler method produces an 8% error.

