
C. Complex Numbers 

1. Complex arithmetic. 

Most people think that complex numbers arose from attempts to solve quadratic equa
tions, but actually it was in connection with cubic equations they first appeared. Everyone 
knew that certain quadratic equations, like 

x 2 + 1 = 0, or x 2 + 2x + 5 = 0, 

had no solutions. The problem was with certain cubic equations, for example 
3 x − 6x + 2 = 0. 

This equation was known to have three real roots, given by simple combinations of the 
expressions 

� � 
(1) A = 3 −1 + 

�
−7, B = 3 −1 − 

�
−7; 

one of the roots for instance is A + B: it may not look like a real number, but it turns out 
to be one. 

What was to be made of the expressions A and B? They were viewed as some sort 
of “imaginary numbers” which had no meaning in themselves, but which were useful as 
intermediate steps in calculations that would ultimately lead to the real numbers you were 
looking for (such as A + B). 

This point of view persisted for several hundred years. But as more and more applications 
for these “imaginary numbers” were found, they gradually began to be accepted as valid 
“numbers” in their own right, even though they did not measure the length of any line 
segment. Nowadays we are fairly generous in the use of the word “number”: numbers of one 
sort or another don’t have to measure anything, but to merit the name they must belong to a 
system in which some type of addition, subtraction, multiplication, and division is possible, 
and where these operations obey those laws of arithmetic one learns in elementary school 
and has usually forgotten by high school — the commutative, associative, and distributive 
laws. 

To describe the complex numbers, we use a formal symbol i representing 
�
−1; then a 

complex number is an expression of the form 

(2)	 a + ib, a, b real numbers. 

If a = 0 or b = 0, they are omitted (unless both are 0); thus we write 

a + i0 = a, 0 + ib = ib, 0 + i0 = 0 .


The definition of equality between two complex numbers is


(3)	 a + ib = c + id a = c, b = d . ∗ 

This shows that the numbers a and b are uniquely determined once the complex number 
a + ib is given; we call them respectively the real and imaginary parts of a + ib. (It would be 
more logical to call ib the imaginary part, but this would be less convenient.) In symbols, 

(4)	 a = Re (a + ib), b = Im (a + ib) 
1 
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2 18.03 NOTES 

Addition and multiplication of complex numbers are defined in the familiar way, making 
use of the fact that i2 = −1 : 

(5a) Addition (a + ib) + (c + id) = (a + c) + i(b + d) 

(5b) Multiplication (a + ib)(c + id) = (ac − bd) + i(ad + bc) 

Division is a little more complicated; what is important is not so much the final formula 
but rather the procedure which produces it; assuming c + id = 0, it is: ≤

a + ib ac + bd bc − ad 
(5c) Division = 

a + ib c − id 
= + i 

c + id c + id 
· 
c − id c2 + d2 c2 + d2 

This division procedure made use of complex conjugation: if z = a + ib, we define the 
complex conjugate of z to be the complex number 

(6) z̄ = a − ib (note that zz̄ = a 2 + b2 ). 

The size of a complex number is measured by its absolute value, or modulus, defined by 

(7) |z| = a + ib = a2 + b2; (thus : zz̄ = z 2 ).| | | |

Remarks. One can legitimately object to defining complex numbers simply as 
formal expressions a + ib, on the grounds that “formal expression” is too vague 
a concept: even if people can handle it, computers cannot. For the latter’s sake, 
we therefore define a complex number to be simply an ordered pair (a, b) of real 
numbers. With this definition, the arithmetic laws are then defined in terms of 
ordered pairs; in particular, multiplication is defined by 

(a, b)(c, d) = (ac − bd, bc + ad) . 

The disadvantage of this approach is that this definition of multiplication seems 
to make little sense. This doesn’t bother computers, who do what they are told, 
but people do better at multiplication by being told to calculate as usual, but to 
use the relation i2 = −1 to get rid of all the higher powers of i whenever they 
occur. 

Of course, even if you start with the definition using ordered pairs, you can 
still introduce the special symbol i to represent the ordered pair (0, 1), agree to 
the abbreviation (a, 0) = a, and thus write 

(a, b) = (a, 0) + (0, 1)(b, 0) = a + ib . 

2. Polar representation. 

Complex numbers are represented geometrically by points in the plane: the number a+ib 
is represented by the point (a, b) in Cartesian coordinates. When the points of the plane 
are thought of as representing complex numbers in this way, the plane is called the complex 
plane. 

By switching to polar coordinates, we can write any non-zero complex number in an 
alternative form. Letting as usual 

x = r cos α, y = r sin α, 

we get the polar form for a non-zero complex number: assuming x + iy = 0, ≤

(8) x + iy = r(cos α + i sin α) . 
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3 C. COMPLEX NUMBERS 

When the complex number is written in polar form, we see from (7) that 

r = x + iy , (absolute value, modulus) | |

We call α the polar angle or the argument of x + iy. In symbols, one sometimes sees 

α = arg (x + iy) (polar angle, argument) . 

The absolute value is uniquely determined by x + iy, but the polar angle is not, since it can 
be increased by any integer multiple of 2λ. (The complex number 0 has no polar angle.) To 
make α unique, one can specify 

0 � α < 2λ principal value of the polar angle. 

This so-called principal value of the angle is sometimes indicated by writing Arg (x + iy). 
For example, 

Arg (−1) = λ, arg (−1) = ±λ,±3λ,±5λ, . . . . 

Changing between Cartesian and polar representation of a complex number is the same 
as changing between Cartesian and polar coordinates. 

Example 1. Give the polar form for: −i, 1 + i, 1 − i, −1 + i
�

3 . 

Solution. 

−i = i cos 32 
� 1 + i = 

�
2 (cos � + i sin � 

4 )4 

−1 + i
�

3 = 2 (cos 2� + i sin 23 
� ) 1 − i = 

�
2 (cos −4 

� + i sin −� )3 4 

The abbreviation cis α is sometimes used for cos α + i sin α; for students of science and 
engineering, however, it is important to get used to the exponential form for this expression: 

(9) e i� = cos α + i sin α Euler’s formula. 

Equation (9) should be regarded as the definition of the exponential of an imaginary power. 
A good justification for it however is found in the infinite series 

t t2 t3 

e t = 1 + + + + . . . . 
1! 2! 3! 

If we substitute iα for t in the series, and collect the real and imaginary parts of the sum 
(remembering that 

i2 = −1, i3 = −i, i4 = 1, i5 = i, . . . , 

and so on, we get 

α2 α4 α3 α5 
i� e = 1 − + 

4! 
− . . . + i α − + 

5! 
− . . . 

2! 3! 
= cos α + i sin α , 

in view of the infinite series representations for cos α and sin α. 

Since we only know that the series expansion for et is valid when t is a real 
number, the above argument is only suggestive — it is not a proof of (9). What it 
shows is that Euler’s formula (9) is formally compatible with the series expansions 
for the exponential, sine, and cosine functions. 

Using the complex exponential, the polar representation (8) is written as 

(10) x + iy = r e i� 



� � 

4 18.03 NOTES 

The most important reason for polar representation is that multiplication of complex 
numbers is particularly simple when they are written in polar form. Indeed, by using (9) 
and the trigonometric addition formulas, it is not hard to show that 

i� i�� i(�+�� )e e = e . 
This gives another justification for definition (9) — it makes the complex exponential follow 
the same exponential addition law as the real exponential. Thus we can multiply two 
complex numbers in polar form by 

(11) r e i� r � e i�
� 

= r r � e i(�+��) ; multiplication rule · 
to multiply two complex numbers, you multiply the absolute values and add the angles. 

By repeated application of this, we get the rule (sometimes called DeMoivre’s formula for 
raising a complex number to a positive integer power: using the notation of (10), 

� �n n in�(12) r e i� = r e ; in particular, (cos α + i sin α)n = cos nα + i sin nα. 

Example 2. Express (1 + i)6 in the form a + bi. 

Solution. We change to the polar form, use (12), then change back to Cartesian form: 
i 6�/4 = 8 e i 3�/2 = −8i . (1 + i)6 = (

�
2 ei�/4)6 = (

�
2)6 e 

The answer may be checked by applying the binomial theorem to (1 + i)6 and collecting the 
real and imaginary parts. 

Division of complex numbers written in polar form is done by the rule (check it by 
crossmultiplying and using the multiplication rule): 

i�r e
= 

r
e i (�−�� ) ; division rule 

r�ei�� r� 

to divide by a complex number, divide by its absolute value and subtract its angle. 

Combining pure oscillations of the same frequency. The equation which does this is 
widely used in physics and engineering; it can be expressed using complex numbers: 

(13) A cos �t + B sin �t = C cos (�t + ζ), where A + Bi = Ce iλ; 

in other words, C = 
�

A2 + B2 , ζ = tan−1 B/A. To prove (13), we have 

A cos �t + B sin �t = Re (A + Bi) · (cos �t + i sin �t) 
i�t= Re (C e iλ e )· 

= Re (C e �t+λ) = C cos (�t + ζ) . 

3. Complex exponentials 

Because of the importance of complex exponentials in differential equations, and in science 
and engineering generally, we go a little further with them. 

Euler’s formula (9) defines the exponential to a pure imaginary power. The definition of 
an exponential to an arbitrary complex power is: 

a ib a(14) e a+ib = e e = e (cos b + i sin b). 

We stress that the equation (14) is a definition, not a self-evident truth, since up to now no 
meaning has been assigned to the left-hand side. From (14) we see that 

a(15) Re (e a+ib) = e cos b, Im (e a+ib) = e a sin b . 
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5 C. COMPLEX NUMBERS 

The complex exponential obeys the usual law of exponents: 
z z(16) e z+z = e e , 

as is easily seen by combining (14) and (11). 

The complex exponential is expressed in terms of the sine and cosine by Euler’s formula 
(9). Conversely, the sin and cos functions can be expressed in terms of complex exponentials. 
There are two important ways of doing this, both of which you should learn: 
(17)	 cos x = Re (e ix), sin x = Im (e ix) ; 

1 −ix), 2
1 
i (e

ix − e−ix) .(18) cos x =	 2 (e
ix + e sin x = 

The equations in (18) follow easily from Euler’s formula (9); their derivation is left for the 
exercises. Here are some examples of their use. 

Example 3. Express cos3 x in terms of the functions cos nx, for suitable n. 

Solution. We use (18) and the binomial theorem, then (18) again: 
3 1 −ix)3cos x =	 8 (e

ix + e
1 −ix + e−3ix)= 8 (e

3ix + 3eix + 3e

= 1 cos 3x + 3 cos x . �4	 4 

As a preliminary to the next example, we note that a function like 
ix e = cos x + i sin x 

is a complex-valued function of the real variable x. Such a function may be written as 

u(x) + i v(x), u, v real-valued 

and its derivative and integral with respect to x is defined to be 

(19) D(u + iv) = Du + iDv, (u + iv) dx = u dx + i v dx . 

From this it follows by a calculation that 

D(e(a+ib)x(20) = (a + ib)e(a+ib)x , and therefore e(a+ib)xdx =
1 

e(a+ib)x . 
a + ib 

Example 4. Calculate e x cos 2x dx by using complex exponentials. 

Solution. The usual method is a tricky use of two successive integration by parts. Using 
complex exponentials instead, the calculation is straightforward. We have 

(1+2i)x e x cos 2x = Re e ,	 by (14) or (15); therefore 

e x cos 2x dx = Re e(1+2i)x dx , by (19). 

Calculating the integral, 

e(1+2i)x dx 
1 

e(1+2i)x	 by (20); = 
1 + 2i 

1 2 �	 � 
=

5 
− 

5 
i e x cos 2x + i e x sin 2x , 

using (14) and complex division (5c). According to the second line above, we want the real 
part of this last expression. Multiply using (5b) and take the real part; you get 

1 ex cos 2x + 2 ex sin 2x.	 �5 5 



6 18.03 NOTES 

In this differential equations course, we will make free use of complex exponentials in 
solving differential equations, and in doing formal calculations like the ones above. This is 
standard practice in science and engineering, and you need to get used to it. 

4. Finding n-th roots. 

To solve linear differential equations with constant coefficients, you need to be able find 
the real and complex roots of polynomial equations. Though a lot of this is done today with 
calculators and computers, one still has to know how to do an important special case by 
hand: finding the roots of 

n z = �, 

where � is a complex number, i.e., finding the n-th roots of �. Polar representation will be 
a big help in this. 

Let’s begin with a special case: the n-th roots of unity: the solutions to 

z n = 1 . 

To solve this equation, we use polar representation for both sides, setting z = rei� on the 
left, and using all possible polar angles on the right; using the exponential law to multiply, 
the above equation then becomes 

r n e in� = 1 e(2k�i), k = 0,±1,±2, . . . . · 

Equating the absolute values and the polar angles of the two sides gives 
n r = 1, nα = 2kλ , k = 0,±1,±2, . . . , 

from which we conclude that 

2kλ 
(�) r = 1, α = , k = 0, 1, . . . , n − 1 . 

n 

In the above, we get only the value r = 1, since r must be real and non-negative. We don’t 
need any integer values of k other than 0, . . . , n− 1 since they would not produce a complex 
number different from the above n numbers. That is, if we add an, an integer multiple of 
n, to k, we get the same complex number: 

α� = 
2(k + an)λ 

= α + 2aλ; and e i�
� 

= e i� , since e 2a�i = (e 2�i)a = 1. 
n 

We conclude from (�) therefore that 

(21) the n-th roots of 1 are the numbers e 2k�i/n, k = 0, . . . , n − 1. 

This shows there are n complex n-th roots of unity. They all lie 
1

ππ 

π π 

i 

i i

33 

3

e

e 

i2 

54 e 

e

1on the unit circle in the complex plane, since they have absolute 
value 1; they are evenly spaced around the unit circle, starting with 
1; the angle between two consecutive ones is 2λ/n. These facts 
are illustrated on the right for the case n = 6. 3 



7 C. COMPLEX NUMBERS 

From (21), we get another notation for the roots of unity (ω is the Greek letter “zeta”): 

(22) the n-th roots of 1 are 1, ω, ω2, . . . , ωn−1 , where ω = e 2�i/n. 

We now generalize the above to find the n-th roots of an arbitrary complex number w. 
We begin by writing w in polar form: 

i� w = r e ; α = Arg w, 0 � α < 2λ, 

i.e., α is the principal value of the polar angle of w. Then the same reasoning as we used 
above shows that if z is an n-th root of w, then 

n i� i(�+2k�)/n(23) z = w = r e , so z = n
�

r e , k = 0, 1, . . . , n − 1. 

Comparing this with (22), we see that these n roots can be written in the suggestive form 

n
�

r e i�/n (24) n
�

w = z0, z0ω, z0ω
2 , . . . , z0ω

n−1 , where z0 = . 

nAs a check, we see that all of the n complex numbers in (24) satisfy z = w : 

n 
0 ω

ni n(z0ω
i)n = z = z0 1i , since ωn = 1, by (22); · 

= w, by the definition (24) of z0 and (23). 

Example 5. Find in Cartesian form all values of a) 3
�

1 b) 4
�

i . 

Solution. a) According to (22), the cube roots of 1 are 1, �, and �2, where 

2λ 2λ 1 
�

3 
� = e 2�i/3 = cos + i sin = + i 

3 3 
− 

2 2 
1

−2�i/3�2 = e = cos 
−2λ 

+ i sin 
−2λ 

= − 
2 
− i 

�

2

3 
. 

3 3 

The greek letter � (“omega”) is traditionally used for this cube root. Note that 
for the polar angle of �2 we used −2λ/3 rather than the equivalent angle 4λ/3, 
in order to take advantage of the identities 

cos(−x) = cos x, sin(−x) = − sin x . 

¯Note that �2 = �. Another way to do this problem would be to draw the position 
of �2 and � on the unit circle, and use geometry to figure out their coordinates. 

b) To find 4
�

i, we can use (24). We know that 4
�

1 = 1, i,−1,−i (either by drawing 
the unit circle picture, or by using (22)). Therefore by (24), we get 

λ4
�

i = z0, z0i, −z0, −z0i, where z0 = e�i/8 = cos 
λ 

+ i sin ;
8 8 
λ λ 

= a + ib, −b + ia, −a − ib, b − ia, where z0 = a + ib = cos + i sin . 
8 8 
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8 18.03 NOTES 

Example 6. Solve the equation x6 − 2x3 + 2 = 0. 

Solution. Treating this as a quadratic equation in x3, we solve the quadratic by using 
the quadratic formula, the two roots are 1 + i and 1 − i (check this!), so the roots of the 
original equation satisfy either 

x 3 = 1 + i, or x 3 = 1 − i . 

This reduces the problem to finding the cube roots of the two complex numbers 1 ± i. 
We begin by writing them in polar form: 

�i/4 −�i/41 + i = 
�

2 e , 1 − i = 
�

2 e . 

(Once again, note the use of the negative polar angle for 1 − i, which is more convenient for 
calculations.) The three cube roots of the first of these are (by (23)), 

6
�

2 e�i/12 = 6
�

2 cos 


 
λ 

+ i sin 

� 
λ 

12 12 

 � 

6
�

2 e 3�i/4 = 6
�

2 cos 
3λ 
4 

+ i sin 
3λ 
4 

, since 
λ 
12 

+ 
2λ 
3 

= 
3λ 
4 

; 

 � 

6
�

2 e −7�i/12 = 6
�

2 cos 
7λ 
12 

− i sin 
7λ 
12 

, since 
λ 
12 

− 
2λ 
3 

= − 
7λ 
12 

. 

−1 + i −1 + i 
The second cube root can also be written as 6

�
2 �

2
= . 

3
�

2 

This gives three of the cube roots. The other three are the cube roots of 1 − i, which 
may be found by replacing i by −i everywhere above (i.e., taking the complex conjugate). 

The cube roots can also according to (24) be described as 

�i/12 −�i/12 z1, z1�, z1�
2 and z2, z2�, z2�

2 , where z1 = 6
�

2 e , z2 = 6
�

2 e . 

Exercises: Section 2E 


