
18.03 Class 9, Feb 23, 2004

Second order equations: linear, constant coefficient, homogeneous.


Vocabulary:


1. F = ma is the basic example. Take a spring attached to a wall,


 spring mass dashpot
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Set up the cooridinate system so that at x = 0 the spring is relaxed.


The cart is influenced by three forces: the spring, the "dashpot"

(which is a way to make friction expicit), and an external force:


mx" = F_spr + F_dash + F_ext


The spring force is characterized by depending only on position: write F_spr(x).

If x > 0 , F_spr(x) < 0

if x < 0 , F_spr(x) > 0


The simplest way to model this behavior (and one which is valid in general

for small x , by the tangent line approximation) is 


F_spr(x) = -kx k > 0 the "spring constant."


The dashpot force is frictional. This means that it depends only on the velocity.




Write F_dash(x'). Also it acts against the velocity:

If x > 0 , F_dash(x') < 0

if x < 0 , F_dash(x') > 0


The simplest way to model this behavior (and one which is valid in general

for small x', by the tangent line approximation) is 


F_dash(x) = -bx b > 0 the "damping constant."


So the equation is 


mx" + bx' + kx = F_ext


The left hand side represents the SYSTEM, the spring/mass/dashpot system.

The right hand side represents the INPUT SIGNAL, an external force at work.

The quantities m , b , k are the "coefficients." In general they may depend

upon time: maybe the force is actually a rocket, and the fuel burns so m decreases.

Maybe the spring gets softer as it ages. Maybe the honey in the dashpot gets stiffer

with time. However, most of the time we will assume that the coefficients are 

CONSTANT.


2. Solutions. To get from x" to x we must integrate twice, so you should 
expect two constants of integration in the general solution. 

Physically, you can release the spring at t = t0 from x(t0) , but 
you also have to say what velocity you impart to it: x'(t0) is needed 
as part of the initial condition. 

So: solutions can cross. There is no concept of direction field. 

Still, initial conditions (x(t0), x'(t0)) determine the solution. 

3. Today we'll find some solutions in the "homogeneous case." Homogeneous
is pronounced "homogE'nEous" where E denotes a long e . It is not 
"homo'genous." It means F_ext = 0 : the system is allowed to evolve on its 
own, without outside interference. 

I displayed a rubber band with a weight on it. It bounced. I asked whether 
all solutions to systems like this bounce. Most people thought no. Let's see. 

Constant coeffient, homogeneous: mx" + bx' + kx = 0 (*) 

This is a lot like x' + kx = 0 , which has as solutoin x = e^{-kt} 



(and more generally multiples of this). It makes sense to try for exponential 
solutions of (*): e^{rt} for some as yet undetermined constant r. 
To see which r might work, plug x = e^{rt} into (*). Organize the 
calculation: the k) , b) , m) is a flag indicating that I should multiply 
the corresonding line by this number. 

k ) x = e^{rt} 
b ) x' = r e^{rt} 
m ) x" = r^2 e^{rt}

 ___________________ 

0 = mx" + bx' + kx = (mr^2 + br + k) e^{rt} 

An exponential is never zero, so we can cancel to see that e^{rt} is a solution 
to (*) exactly when r is a root of the "characteristic polynomial" 

ms^2 + bs + k 

Remark on the quadratic formula: it reads 

r = (- b +_ sqrt(b^2 - 4mk)) / 2m 

It's often convenient to divide by m in advance. The effect is that we can take 
m = 1: x" + bx' + kx with characteristic polyonomial s^2 + bs + k. 

The quadratic formula for the roots can be written 


r = -b/2 +- sqrt((b/2)^2 - k) 


Example A. x" + 5x' + 4x = 0 

The characteristic polynomial s^2 + 5s + 4 factors as (s + 1)(s + 1) 

so the roots are r = -1 and r = -4 . The corresponding exponential solutions

are e^{-t} and e^{-4t} . These ARE solutions, as you can check. You can also

see that any constant multiple of each is again a solution.

They both damp down to zero; no oscillation here.


Example B. x" + 4x' + 5x = 0 
The characteristic polynomial s^2 + 4s + 5 has roots 

r = -2 +- sqrt(4-5) = -2 +- i 

Our old friend i = sqrt(-1) appears, and we have exponential solutions 

e^{(-2+i)t} , e^{(-2-i)t} 



___________________

I guess we were expecting REAL solutions. For this we have: 

Theorem: If x is a complex solution to mx" + bx' + kx = 0, where m, b, and k 
are real, then the real and imaginary parts of x are also solutions. 

Proof: Write x = u + iv and build the table. 

k ) x = u + iv 
b ) x' = u' + iv' 
m ) x" = u" + iv" 

0 = (mu" + bu' + ku) + i(mv" + bv' + kv) 

Both things in parentheses are real, so the only way this can happen is for

both of them to be zero.


So in our situation, 


e^{(-2+i)t} has real part e^{-2t} cos(t) 

and imaginary part e^{-2t} sin(t) 

so we have those two solutions. 

We have the other normal mode too. What does it lead to? 

e^{(-2-i)t} has real part e^{-2t} cos(-t) = e^{-2t} cos(t) 
and imaginary part e^{-2t} sin(t) = - e^{-2t} sin(t) 

Nothing new, since we already knew that multiples of solutions are solutions 
(of a homogeneous linear equition). 
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