Solutions to Recitation 14 Problems

1. This is a function which is 1 between a and b, and zero otherwise. From the definition of the Laplace transform,

$$
F(s)=\int_{a}^{b} e^{-s t} d t=\frac{1}{s}\left(e^{-a s}-e^{-b s}\right) .
$$

2. Let's denote by $g_{b}(t)=\frac{1}{b}(u(t)-u(t-b))$ to denote the dependence on b. Then using the formula for \#1 with $a=0$, we see that the corresponding laplace transform is

$$
\frac{1}{b} \cdot \frac{1}{s}\left(1-e^{-b s}\right)
$$

Using l'Hôpital's rule (taking derivative with respect to b),

$$
\lim _{b \rightarrow 0} \frac{1-e^{-b s}}{b s}=\lim _{b \rightarrow 0} \frac{s e^{-b s}}{s}=1
$$

Alternatively, note that the derivative of the function $e^{-s t}$ at $t=0$ is computed by

$$
\lim _{b \rightarrow 0} \frac{e^{-b s}-1}{b}
$$

so what we want is negative of this derivative times $\frac{1}{s}$. Since the derivative is $-s$, we get to the same conclusion.
3. Because $e^{a t} \cos (\omega t)=\frac{e^{a t+\omega t i}+e^{a t-\omega t i}}{2}$, by linearity, the Laplace transform of this function is

$$
\frac{1}{2}\left(\frac{1}{s-a-\omega i}+\frac{1}{s-a+\omega i}\right)=\frac{s-a}{(s-a)^{2}+\omega^{2}}
$$

Similarly, $e^{a t} \sin (\omega t)=\frac{e^{a t+\omega t i}-e^{a t-\omega t i}}{2 i}$, the Laplace transform is

$$
\frac{1}{2 i}\left(\frac{1}{s-a-\omega i}-\frac{1}{s-a+\omega i}\right)=\frac{\omega}{(s-a)^{2}+\omega^{2}}
$$

The poles are complex values s for which the denominator of $F(s)$ is zero. So in both the cos and sin cases, the poles are located at $s=a \pm \omega i$. Following are the graphs and pole diagrams for the three functions. Recall that theoretically (see Prof. Miller's notes section 19) we expect the rightmost poles of $F(s)$ to determine the general behavior of $f(t)$ for large t : that is, if the rightmost pole is located at $\alpha+\beta i$, then $f(t)$ behaves like $e^{(\alpha+\beta i) t}$ for large t. Since we are looking at the functions exactly of this form in this problem, we get the exact match.

Figure 1: $e^{-t} \cos (t)$

Figure 2: $e^{-t} \sin (t)$

Figure 3: $e^{t} \sin (2 t)$

