NOTES RELATED TO SVD DERIVATION

Given
$$\underline{\mathbf{f}} = \underline{\mathbf{M}} \, \underline{\mathbf{i}}$$
 and a growth in (length)² of $\mathbf{s} \equiv \frac{|\underline{\mathbf{f}}|^2}{|\underline{\mathbf{i}}|^2} = \frac{\underline{\mathbf{f}} \cdot \underline{\mathbf{f}}}{\underline{\mathbf{i}} \cdot \underline{\mathbf{i}}} = \frac{\underline{\mathbf{i}}^{\mathrm{T}} \, \underline{\mathbf{M}} \, \underline{\mathbf{i}}}{\underline{\mathbf{i}}^{\mathrm{T}} \, \underline{\mathbf{i}}}$ (note $\underline{\mathbf{i}} \cdot \underline{\mathbf{i}} \equiv \underline{\mathbf{i}}^{\mathrm{T}} \, \underline{\mathbf{i}}$), what vector $\underline{\mathbf{i}}$ will extremize \mathbf{s} ?

Let $\underline{\mathbf{I}}_n$ be some orthonormal basis. We may as well let $\underline{\mathbf{i}}$ have unit length ($\underline{\mathbf{i}} \cdot \underline{\mathbf{i}} = 1$). If we work in 2 dimensions we can represent $\underline{\mathbf{i}}$ in the $\underline{\mathbf{I}}_n$ basis as $\underline{\mathbf{i}} = \cos(\mathbf{q}) \underline{\mathbf{I}}_1 + \sin(\mathbf{q}) \underline{\mathbf{I}}_2$. Substituting this into the definition of \boldsymbol{s} gives,

$$\boldsymbol{s} = \frac{\mathbf{\underline{f}} \cdot \mathbf{\underline{f}}}{\mathbf{\underline{i}} \cdot \mathbf{\underline{i}}} = \mathbf{\underline{f}} \cdot \mathbf{\underline{f}} = (\underline{\mathbf{M}} \ \mathbf{\underline{i}}) \cdot (\underline{\mathbf{M}} \ \mathbf{\underline{i}}) = (\cos(q) \ \underline{\mathbf{M}} \ \mathbf{\underline{I}}_1 + \sin(q) \ \underline{\mathbf{M}} \ \mathbf{\underline{I}}_2) \cdot (\cos(q) \ \underline{\mathbf{M}} \ \mathbf{\underline{I}}_1 + \sin(q) \ \underline{\mathbf{M}} \ \mathbf{\underline{I}}_2)$$
$$= \cos^2(q) \left| \underline{\mathbf{M}} \ \mathbf{\underline{I}}_1 \right|^2 + \sin^2(q) \left| \underline{\mathbf{M}} \ \mathbf{\underline{I}}_2 \right|^2 + 2\cos(q)\sin(q) \left(\underline{\mathbf{M}} \ \mathbf{\underline{I}}_1 \right) \cdot \left(\underline{\mathbf{M}} \ \mathbf{\underline{I}}_2 \right)$$
To find the vectors $\mathbf{\underline{i}} = \cos(q) \ \mathbf{\underline{I}}_1 + \sin(q) \ \mathbf{\underline{I}}_2$ that extremize \boldsymbol{s} , let
$$0 = \frac{d\boldsymbol{s}}{d\boldsymbol{s}} = \sin(2q) \left(-|\mathbf{M}| \ \mathbf{\underline{I}}|^2 + |\mathbf{M}| \ \mathbf{\underline{I}}|^2 \right) + 2\cos(2q) \left(\mathbf{M} \ \mathbf{\underline{I}}_1 \right) \cdot \left(\mathbf{M} \ \mathbf{\underline{I}}_2 \right)$$

$$0 = \frac{d\mathbf{q}}{d\mathbf{q}} = \sin(2\mathbf{q}) \left[-\left[\underline{\mathbf{M}} \ \mathbf{I}_1\right] + \left[\underline{\mathbf{M}} \ \mathbf{I}_2\right] \right] + 2\cos(2\mathbf{q}) \left(\underline{\mathbf{M}} \ \mathbf{I}_1\right) \cdot \left(\underline{\mathbf{M}} \ \mathbf{I}_2\right)$$

We want to find all the vectors **i** that satisfy the above equality. We can simply

We want to find all the vectors \underline{i} that satisfy the above equality. We can simply this task by choosing a convenient basis (this won't limit the possible values of \underline{i}). Consider the basis \underline{I}_n that satisfies

$$\mathbf{O} = \left(\underline{\mathbf{M}} \ \underline{\mathbf{I}}_{1}\right) \cdot \left(\underline{\mathbf{M}} \ \underline{\mathbf{I}}_{2}\right) = \underline{\mathbf{I}}_{1}^{\mathrm{T}} \ \underline{\mathbf{M}}^{\mathrm{T}} \ \underline{\mathbf{M}}^{\mathrm{T}} \ \underline{\mathbf{M}} \ \underline{\mathbf{I}}_{2} = \underline{\mathbf{I}}_{1} \cdot \left(\underline{\mathbf{M}}^{\mathrm{T}} \ \underline{\mathbf{M}} \ \underline{\mathbf{I}}_{2}\right)$$

For this to be true, $(\underline{\mathbf{M}}^{\mathrm{T}} \underline{\mathbf{M}} \underline{\mathbf{I}}_{2})$ must be perpendicular to $\underline{\mathbf{I}}_{1}$. Since $\underline{\mathbf{I}}_{2}$ is also perpendicular to $\underline{\mathbf{I}}_{1}$, $(\underline{\mathbf{M}}^{\mathrm{T}} \underline{\mathbf{M}} \underline{\mathbf{I}}_{2})$ must be parallel to $\underline{\mathbf{I}}_{2}$,

$$(\underline{\mathbf{M}}^{\mathrm{T}} \underline{\mathbf{M}}) \underline{\mathbf{I}}_{2} = \boldsymbol{I} \underline{\mathbf{I}}$$

 $\underline{\mathbf{I}}_2$, then, is an eigenvector of $(\underline{\mathbf{M}}^T \underline{\mathbf{M}})$. We should note that in this basis $\underline{\mathbf{I}}_1$ also solves the above eigenvalue equation, and that only these 2 linearly independent eigenvectors exist for the 2x2 matrix $(\underline{\mathbf{M}}^T \underline{\mathbf{M}})$. In this basis, the vectors $\underline{\mathbf{i}}$ that extremize \boldsymbol{s} satisfy

$$0 = \frac{\mathrm{d}\boldsymbol{s}}{\mathrm{d}\boldsymbol{q}} = \sin\left(2\boldsymbol{q}\right) \left(-\left|\underline{\mathbf{M}} \,\underline{\mathbf{I}}_{1}\right|^{2} + \left|\underline{\mathbf{M}} \,\underline{\mathbf{I}}_{2}\right|^{2}\right)$$

Which is only true when $q = k \frac{p}{2}$, k = 0,1,2,... (i.e., when <u>i</u> is aligned with one of the two basis vectors).

Thus $\mathbf{\underline{i}} = \mathbf{\underline{I}}_1$ and $\mathbf{\underline{i}} = \mathbf{\underline{I}}_2$ are the two vectors that extremize \mathbf{s} (one grows most, one least). The value of \mathbf{l} can be obtained by plugging $\mathbf{\underline{I}}_2 = \mathbf{\underline{i}}$ into the above eigenvalue equation and dotting $\mathbf{\underline{i}}$ into both sides,

$$\underline{\mathbf{i}} \cdot \left(\underline{\mathbf{M}}^{\mathrm{T}} \ \underline{\mathbf{M}}\right) \underline{\mathbf{i}} = \mathbf{l} \ \underline{\mathbf{i}} \cdot \underline{\mathbf{i}}$$
$$\underline{\mathbf{f}} \cdot \underline{\mathbf{f}} = \mathbf{l}$$

Since we know $\underline{\mathbf{f}} \cdot \underline{\mathbf{f}} = \mathbf{s}$, the eigenvalues are $l = \mathbf{s}$.

In summary, the growth in length of a vector \underline{i} under operation by \underline{M} will be extremized when \underline{i} satisfies

$$\left(\underline{\mathbf{M}}^{\mathrm{T}} \ \underline{\mathbf{M}}\right) \underline{\mathbf{i}} = \mathbf{s} \ \underline{\mathbf{i}}$$

where s represents the change in absolute square of $\underline{\mathbf{i}}$ after operation by $\underline{\mathbf{M}}$. The vectors $\underline{\mathbf{i}}$ are the initial singular vectors, and \sqrt{s} represents the singular values. Operating on the above equality from the left with $\underline{\mathbf{M}}$ gives $(\underline{\mathbf{M}} \ \underline{\mathbf{M}}^{\mathrm{T}}) \underline{\mathbf{f}} = s \ \underline{\mathbf{f}}$

The vectors $\underline{\mathbf{f}}$ that satisfy this equality are the final time singular vectors.