NOTES RELATED TO SVD DERIVATION

Given $\underline{\mathbf{f}}=\underline{\underline{\mathbf{M}}} \underline{\underline{\mathbf{i}}}$ and a growth in (length) ${ }^{2}$ of $\sigma \equiv \frac{|\underline{\mathbf{f}}|^{2}}{|\underline{\mathbf{i}}|^{2}}=\frac{\underline{\mathbf{f}} \cdot \underline{\mathbf{f}}}{\underline{\mathbf{i}} \cdot \underline{\underline{i}}}=\frac{\underline{\underline{i}}^{\mathrm{T}}}{\underline{\underline{\mathbf{M}}}^{\mathrm{T}} \underline{\underline{\mathbf{M}}} \underline{\underline{\mathbf{i}}}} \underline{\underline{\mathbf{i}}}^{\mathrm{T}} \underline{\underline{\mathbf{i}}}$ (note $\underline{\mathbf{i}} \cdot \underline{\mathbf{i}} \equiv \underline{\underline{\mathbf{i}}}^{\mathrm{T}} \underline{\mathbf{i}}$), what vector $\underline{\mathbf{i}}$ will extremize σ ?

Let $\underline{\mathbf{I}}_{n}$ be some orthonormal basis. We may as well let $\underline{\underline{\mathbf{i}}}$ have unit length $(\underline{\mathbf{i}} \cdot \underline{\mathbf{i}}=1)$. If we work in 2 dimensions we can represent $\underline{\mathbf{i}}$ in the $\underline{\mathbf{I}}_{n}$ basis as $\underline{\mathbf{i}}=\cos (\theta) \underline{\mathbf{I}}_{1}+\sin (\theta) \underline{\mathbf{I}}_{2}$. Substituting this into the definition of σ gives,

$$
\begin{aligned}
& \sigma=\underline{\underline{\mathbf{f}} \cdot \underline{\mathbf{f}}} \underset{\underline{\mathbf{i}} \cdot \underline{\underline{i}}}{\underline{\mathbf{f}}} \underline{\underline{\mathbf{f}}}=(\underline{\underline{\mathbf{M}}} \underline{\underline{\mathbf{i}}}) \cdot \underline{\underline{\mathbf{M}} \underline{\underline{\mathbf{i}}}})=\left(\cos (\theta) \underline{\underline{\mathbf{M}}} \underline{\underline{\mathbf{I}}}_{1}+\sin (\theta) \underline{\underline{\mathbf{M}}} \underline{\underline{\mathbf{I}}}_{2}\right) \cdot\left(\cos (\theta) \underline{\underline{\mathbf{M}}} \underline{\underline{\mathbf{I}}}_{1}+\sin (\theta) \underline{\underline{\mathbf{M}}} \underline{\underline{\mathbf{I}}}_{2}\right) \\
& =\cos ^{2}(\theta)\left|\underline{\underline{\mathbf{M}}} \underline{\underline{I}}_{1}\right|^{2}+\sin ^{2}(\theta)\left|\underline{\underline{\mathbf{M}}} \underline{\underline{I}}_{2}\right|^{2}+2 \cos (\theta) \sin (\theta)\left(\underline{\underline{\mathbf{M}}} \underline{\underline{\mathbf{I}}}_{1}\right) \cdot\left(\underline{\underline{\mathbf{M}}} \underline{\underline{\mathbf{I}}}_{2}\right)
\end{aligned}
$$

To find the vectors $\underline{\mathbf{i}}=\cos (\theta) \underline{\mathbf{I}}_{1}+\sin (\theta) \underline{\mathbf{I}}_{2}$ that extremize $\boldsymbol{\sigma}$, let
$0=\frac{\mathrm{d} \sigma}{\mathrm{d} \theta}=\sin (2 \theta)\left(-\left|\underline{\underline{\mathbf{M}}} \underline{\underline{I}}_{1}\right|^{2}+\left|\underline{\underline{\mathbf{M}}} \underline{\underline{\mathbf{I}}}_{2}\right|^{2}\right)+2 \cos (2 \theta)\left(\underline{\underline{\mathbf{M}}} \underline{\underline{\mathbf{I}}}_{1}\right) \cdot\left(\underline{\underline{\mathbf{M}}} \underline{\underline{\mathbf{I}}}_{2}\right)$
We want to find all the vectors $\underline{\mathbf{i}}$ that satisfy the above equality. We can simply this task by choosing a convenient basis (this won't limit the possible values of $\underline{\mathbf{i}}$). Consider the basis $\underline{\mathbf{I}}_{n}$ that satisfies
$0=\left(\underline{\underline{\mathbf{M}}} \underline{\underline{\mathbf{I}}}_{1}\right) \cdot\left(\underline{\underline{\mathbf{M}}} \underline{\underline{\mathbf{I}}}_{2}\right)=\underline{\mathbf{I}}_{1}{ }^{\mathrm{T}} \underline{\underline{\mathbf{M}}}{ }^{\mathrm{T}} \underline{\underline{\mathbf{M}}} \underline{\mathbf{I}}_{2}=\underline{\mathbf{I}}_{1} \cdot\left(\underline{\underline{\mathbf{M}}}^{\mathrm{T}} \underline{\underline{\mathbf{M}}} \underline{\underline{\mathbf{I}}}_{2}\right)$
For this to be true, ($\left.\underline{\underline{\mathbf{M}}}^{\mathrm{T}} \underline{\underline{\mathbf{M}}} \underline{\underline{\mathbf{I}}}_{2}\right)$ must be perpendicular to $\underline{\mathbf{I}}_{1}$. Since $\underline{\underline{\mathbf{I}}}_{2}$ is also perpendicular to $\underline{\mathbf{I}}_{1}$, $\left.\underline{\underline{\mathbf{M}}}^{\mathrm{T}} \underline{\underline{\mathbf{M}}} \underline{\underline{\mathbf{I}}}_{2}\right)$ must be parallel to $\underline{\mathbf{I}}_{2}$,
$\left(\underline{\underline{\mathbf{M}}}^{\mathrm{T}} \underline{\underline{\mathbf{M}}}\right) \underline{\mathbf{I}}_{2}=\lambda \underline{\mathbf{I}}_{2}$
$\underline{\underline{\mathbf{I}}}_{2}$, then, is an eigenvector of $\left(\underline{\underline{\mathbf{M}}}^{\mathrm{T}} \underline{\underline{\mathbf{M}}}\right)$. We should note that in this basis $\underline{\mathbf{I}}_{1}$ also solves the above eigenvalue equation, and that only these 2 linearly independent eigenvectors exist for the 2×2 matrix $\left(\underline{\underline{\mathbf{M}}}{ }^{\mathrm{T}} \underline{\underline{\mathbf{M}}}\right)$.
In this basis, the vectors $\underline{\mathbf{i}}$ that extremize σ satisfy
$0=\frac{\mathrm{d} \sigma}{\mathrm{d} \theta}=\sin (2 \theta)\left(-\left|\underline{\underline{\mathbf{M}}} \underline{\underline{I}}_{1}\right|^{2}+\left|\underline{\underline{\mathbf{M}}} \underline{\underline{I}}_{2}\right|^{2}\right)$
Which is only true when $\theta=k \frac{\pi}{2}, \quad k=0,1,2, \ldots$ (i.e., when $\underline{\mathbf{i}}$ is aligned with one of the two basis vectors).
Thus $\underline{\mathbf{i}}=\underline{\mathbf{I}}_{1}$ and $\underline{\mathbf{i}}=\underline{\mathbf{I}}_{2}$ are the two vectors that extremize σ (one grows most, one least). The value of λ can be obtained by plugging $\underline{\mathbf{I}}_{2}=\underline{\mathbf{i}}$ into the above eigenvalue equation and dotting $\underline{\mathbf{i}}$ into both sides,
$\underline{\underline{\mathbf{i}}} \cdot\left(\underline{\underline{\mathbf{M}}}^{\mathrm{T}} \underline{\underline{\mathbf{M}}}\right) \underline{\mathbf{i}}=\lambda \underline{\mathbf{i}} \cdot \underline{\mathbf{i}}$
$\underline{\mathbf{f}} \cdot \underline{\mathbf{f}}=\lambda$
Since we know $\underline{\mathbf{f}} \cdot \underline{\mathbf{f}}=\sigma$, the eigenvalues are $\lambda=\sigma$.
In summary, the growth in length of a vector $\underline{\mathbf{i}}$ under operation by $\underline{\underline{\mathbf{M}}}$ will be extremized when $\underline{\mathbf{i}}$ satisfies $\left(\underline{\underline{\mathbf{M}}}^{\mathrm{T}} \underline{\underline{\mathbf{M}}}\right) \underline{\mathbf{i}}=\sigma \underline{\mathbf{i}}$
where σ represents the change in absolute square of $\underline{\mathbf{i}}$ after operation by $\underline{\underline{\mathbf{M}}}$. The vectors $\underline{\mathbf{i}}$ are the initial singular vectors, and $\sqrt{\sigma}$ represents the singular values. Operating on the above equality from the left with $\underline{\underline{\mathbf{M}}}$ gives
$\left(\underline{\underline{\mathbf{M}}} \underline{\underline{\mathbf{M}}}^{\mathrm{T}}\right) \underline{\mathbf{f}}=\sigma \underline{\mathbf{f}}$
The vectors $\underline{\mathbf{f}}$ that satisfy this equality are the final time singular vectors.

