
CHAPTER 3 

Examples in Climate Change. 

This Chapter includes a series of self-contained examples of the use of time series tools in the 

context of climate problems. Most of the material consists of published papers; the remainder 

discusses aspects of the study of climate with strong connection to understanding of time series. 

The published or submitted papers are available on line at http://puddle.mit.edu/~cwunsch. 

The attached papers, also available online, are 

Wunsch, C., On sharp spectral lines in the climate record and the millennial peak. Paleoceano., 

15, 417-424, 2000. 

Wunsch, C., The spectral description of climate change including the 100KY energy, Clim. Dyn., 

DOI 

10.1007/s00382-002-0279-z, 2002. 

Wunsch, C. and D. E. Gunn, A densely sampled core and climate variable aliasing, submitted 

for publication, 2002. 

Huybers, P. and C. Wunsch, Depth and orbital-tuning: a new chronology of glaciation and 

nonlinear climate change, submitted for publication, 2002. 

Wunsch, C., Greenland–Antarctic phase relations and millennial time-scale climate fluctuations 

in the Greenland cores, to be published, 2003. 
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100 3. EXAMPLES IN CLIMATE CHANGE. 

Notes on Combined Milankovitch and Tidal Theory 1 

Carl Wunsch 

1. Gravitational Tides 

One of the central elements of all discussions of low frequency climate change is the hypothesis 

that changes in the earth-sun orbital configuration influencing the solar radiation incident on 

the earth, has important consequences. This hypothesis has become known as the Milankovitch 

theory; its history is well-described by Imbrie and Imbrie (1986). A better known physical 

system dependent upon orbital configurations is the ordinary gravitational tides. In practice, 

the problem of tides and of Milankovitch are very closely related, and it is interesting to discuss 

them together, both because it is easy, and because the tides have recently become a center of 

attention for their possible role in climate change. One can have a nearly unified description. 

Milankovitch theory is in some ways much simpler than the tidal problem, because it involves 

only the relative positions of the sun and earth, whereas the tides also involve the moon–whose 

motion is extremely complicated. On the other hand, the earth is opaque to solar radiation, 

whereas it is “transparent” to gravitational forcing, and the opacity renders that part of the 

insolation forcing discussion more complicated. Several hundred years of experience in under-

standing gravity tides in the ocean and atmosphere is also a good background for understanding 

how to determine the response of the climate system to the analogous insolation forcing. 

The fundamental framework for discussing both tides and solar radiation is the idea that the 

nearly spherical earth is in an essentially elliptical orbit about the sun. In practice, it is simpler, 

and entirely accurate, to take a Ptolemaic view and regard the sun as in orbit about the earth, 

and we will mostly use that vocabulary. Let us begin with a discussion of solar tides, assuming 

the moon to be absent.  

A straightforward derivation of the tidal potential is given by Lamb (1932) and in the Ap-

pendix to Munk and Cartwright (1966). The fundamental positional astronomy is described by 

Smart (1962), Green (1985), and Anonymous (1961). Astronomers use many different coordi-

nate systems, time measurements, and notations. A good elementary introduction can be found 

in Bowditch (1962, and later editions). Consider the geometry of Fig. 1 showing an observer 

at point P with longitude λ, co-latitude θ, and distance r from the center of the earth (most 

often the earth’s radius, r = a).  The  sun  is at S,  at a distance  R from the center of the earth S 

and a distance ρ S (not to be confused with density) from the observer. The solar mass is M S . 

For the observer at P , the disturbing gravitational potential of the sun is, 

GM S 
V = , (1.1) S 

ρ S 

1orbital.tex, January 15, 2003 
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R 1 2 (r/R ) c α + (r/R )− os S 

∞ � 

n=0 

F����� 1. Geometry of the subsolar point Q, relative to that of an observer at 

P. Only the angle α relative to the center of the earth, and the distance ρ S are 

required to calculate the gravitational forcing or insolation at P. (Adapted from 

Munk and Cartwright, 1966). 

where G is the gravitational constant. Let α be the angle, shown between the observer’s vertical 

(the “zenith”) and the line connecting the solar position to the center of the earth. Then, 

GM GM S S 
V S = = � �

1/2 
. (1.2) 

ρ S 2 
S S 

The ratio, r/R S is the “solar parallax” and is a very small number. Expanding (1.2) in the 

parallax, we obtain, � � � � � � � �
2

n GMGM r r 3 1r S S 2 Pn (cos α) =  1 +  cos α + cos α − + ... 
R R R 2 2 

= ,S 
R R S S S S 

(1.3) 

where the Pn (cos α) are the ordinary Legendre polynomials (P 0 = 1, P1 (cos α) = cos  α, P 2 (cos α) =  
2 (3/2) cos α − (1/2) ,.... 

Now the first term is a constant and so has no gradient and produces no force; it can be 

safely dropped. The gradient of the second term in a spherical coordinate system (r, α, β) 

(that is with the pole at the subsolar point, so that the observer’s co-latitude in that coordinate 

� � 

S 

is to and is system α), is easy compute, just, 

GM S r GM S 

R S 
∇ 

R S 
cos α = 

R 2 (cos α, − sin α, 0) (1.4) 

has a constant magnitude, and is directed toward the sun. It represents the net attraction of the 

earth by the sun; when multiplied by the earth’s density ρ (α, β, r) and integrated over the sphere 
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F����� 2. Schematic (after George Darwin) of orbital geometry. For a non-

spinning earth in orbit about the sun at S, all points in and on the earth, e.g. 

A, move in a circle of common diameter, albeit about different centers. Thus all 

points on the earth experience an identical centrifugal force. The spin motion is 

simply superimposed. 

2 (0 ≤ r ≤ a, 0 ≤ α ≤ π, 0 ≤ β ≤ 2π) , it is readily found to have magnitude, GM E M S /R where 

M E is the earth’s mass. The earth does not fall into 

balanced by the centrifugal motion of the earth about 

with the third and higher order terms of Eq. (1.3), or 

S 

the sun, and so this force is necessarily 

the sun (see Fig. 2). We are thus left 

�� � � � � � �
2 3 GM S r 3 1 r

2 V S = cos α − + P (cos α) +  ... (1.5) 3 
R S R 2 2 R S S 

Expression (1.5) can be simplified a bit. First, note that g, earth’s gravity at the surface is, 

GM E 
g = , (1.6) 

2 a 
2 where M is the earth’s mass, and a is it’s radius (in spherical approximation). So, G = a g/M E 

and, 
E 

�� � � � �
2 2 V S a M S r 3 1 

2 = cos α − + ... . (1.7) 
g R S M E R S 2 2 
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F����� 3. Latitude and longitude of the subsolar point in Greenwich coordinates 

(λs, θs). Angles  ls, ψs are measured from the vernal equinox Υ. (Adapted from 

Munk and Cartwright, 1966). 

Setting r = a, we have 

�� � � � � � �
3 4 V S M S a 3 1 a 

2 
3 = a cos α − + P (cos α) +  ... , (1.8) 

g M E R S 2 2 R S 

at the surface. The surfaces V S /g =constant are rotationally symmetric ellipsoidal bulges point-

ing at the subsolar point and at the antipodal point. Physically, the gravitational attraction of 

the sun is larger than the outward centrifugal force on the side of the earth nearest the sun with 

a net attraction toward the sun, but on the far-side, the gravitational force is weaker than the 

centrifugal force, and the apparent gravity is directed away from the sun. An observer on the 

rotating earth moves in and out of a bulge twice/day, and unless the sun is over the equator, 

one bulge will appear larger than the other. This geometric effect is the origin of the dominant 

semidiurnal, and the diurnal component tide, the latter making one side of the bulge look greater 

than the other to the observer. See the references. 

Eq. (1.8) is still written in a coordinate system based upon the sub-solar point, and for it to 

be useful, we need it in ordinary latitude and longitude. Consider Fig. 3 defining the position 

of the sub-solar point in Greenwich coordinates. θ S is the co-latitude of the instantaneous sub-

solar point, and λ S is the Greenwich longitude of the instantaneous sun measured from the point 

(angle) Υ, and which is defined below. From elementary spherical trigonometry we have, 

cos α = cos  θ cos θ + sin  θ sin θ cos (λ S − λ) . (1.9) S S 

Unfortunately, there is a wide variety of notations in use. (Eq. 1.9 is a special case of the 

so-called addition theorem for change of coordinate in spherical harmonics.) Substituting (1.9) 



104	 3. EXAMPLES IN CLIMATE CHANGE. 

into (1.8), and doing a bit of manipulation, we obtain, 
� ��  � 

V 3 
2 1 1 1 S 2 

= H cos θ − cos θ − + H sin (2θ ) sin (2θ) cos  (λ − λ) (1.10) S	 S S 
g 2 3 3 2 

1 
2 2 +	 H sin θ sin θ cos 2 (λ − λ) +  ...,


2
 S S� �3 3 M a S 
H = . 

2 M E R S 

There is an equivalent expansion explicitly in spherical harmonics. 

Eq. (1.10) provides the basic structure of the most important tidal lines (some higher order 

terms, represented by the ellipsis, ..., are usually carried along in standard representations, but 

they are significantly weaker, being proportional to the solar parallax to the fourth power or 

higher). The first term has no dependence upon λ S , which is called the “hour-angle” of the sun. 

Thus its time-dependence is controlled by changes in the solar co-latitude θ S , and in the solar-
2	 ◦ radius R S (in H). Because cos θ S = (1/2) (1 + cos 2θ S ) , and θ S today varies between ±23.5 

over the year, the trigonometric term has a dominant 6 month periodicity. With the sun moving 

in an ellipse, R S will also vary with an annual periodicity; its reciprocal will have an annual 

period plus all of its harmonics. 
◦ The second term on the right contains a term in cos (λ − λ) . Because λ changes by 360 

in one day, the dominant periodicity will be 24 hours. This term thus gives rise to the solar 

diurnal tides. Notice that the term vanishes for θ = π/2, that is on the equator. The term is 

also modulated by sin (2θ S ) , and any variation in R S throughout the year. The last term is 

S	 S 

dominated by the time change in cos 2 (λ − λ) and will have a 12 hour period; these are the 

solar semi-diurnal tides. 

Some terms of (1.10) are time-independent, producing a permanent tidal deformation of the 

earth, and which is important in satellite altimetry and geodesy. 

S 

1.1. Splitting. Consider the product of two cosines (or of a sine and cosine, etc.) in time, 

1	 1 
cos (2πs1 t) cos  (2πs t) =  

2 
cos (2π (s − s ) t) +

2 
cos (2π (s + s ) t) (1.11) 2 1 2	 1 2 

that is, the product is the same as two cosines in which s is “split” into two new frequencies, 1 

s ± s 2 . So for example, the second term on the right in (1.10) is the product of a cosine of a 

frequency of 1 cycle/day, and of a sinusoid of frequency 2 cycles/year. Thus this term can be 

re-written (left to the reader or the references) as the sum of two terms, one at one cycle/day 

plus 2 cycles/year and one cycle/day minus 2 cycles/year. Each of these two terms is multiplied 

1 

3 by H which is proportional to 1/R , and which one can anticipate will vary at one cycle/year, 
S 

and with all of its overtones as well. So each of the two terms in (1.11, in will be re-split by one 

cycle/year and all integer multiples of this frequency. The various products of time dependent 

sinusoids is the origin of the splitting of the tidal lines into many neighboring frequencies; for 

the sun, the frequencies are generally separated by integer multiples of one cycle/year. Because 
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F����� 4. Geometry of a body at S moving in an exaggerated ellipse about the 

earth at a focus. ν is  the true anomaly  of  the body  (the sun),  E measured relative 

to the center of the ellipse is the eccentric anomaly. ω defines the angle between 

the vernal equinox Υ and perihelion. a S , b are the semi-major and minor axes 

of the ellipse, and a S is also the radius of the bounding circle. ν,E,M (the solar 

anomalies) are all measured from perigee. M is the angle of the position of the 

fictitious mean sun moving uniformly along the circle. 

one cycle/year is a much smaller frequency than one or two cycles/day, the lines tend to cluster 

narrowly about one and two cycles/day. 

1.2. Solar Motion. It is useful to understand a bit about how astronomers specify R S , 

θ S , λS . Consider by way of example, the motion of the sun in its elliptical orbit. In the formulas 

above, λ S is not an angle which changes uniformly with time, because the angular movement of 

a body in an ellipse is not uniform. Consider Fig. 4 (adapted from Smart, 1962, p. 111), The 

position of the sun in the ellipse is given by its radius, R S , and the angle v, called the “true 

anomaly”. Kepler’s Second Law says that in an elliptical orbit, “equal areas are swept out in 

equal time”, but this implies that the rate of change of v varies with time, and is inconvenient 

to compute. They prefer to use instead the angle E, called the “eccentric anomaly,” which can 

then in turn be related to another angle, called the “mean anomaly” that has a uniform rate 

of change. Then with some elementary trigonometry and ellipse geometry, Smart (1962) shows 

that 
1/2 � � 

v (1 + e) E 
tan = . (1.12) 

1/2 
tan 

2 2 (1 − e) 
Furthermore, the radius vector, 

R = a (1 − e cos E) , (1.13) 

where a S is the semi-major axis of the ellipse. 

S S 
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Define a fictitious mean sun moving at the average angular rate of the real sun at orbital 

longitude M , the mean anomaly, 

M = n (t − τ ) (1.14) 

where τ is a time origin and n is a frequency defined as one cycle/year. Some more elementary 

geometry and Kepler’s Law shows that the relationship between E and M is given by the “Kepler 

Equation”, 

E − e sin E = M = n (t − τ ) . (1.15) 

For small e (typically about .02 for the sun), the Kepler Equation can be solved iteratively for 

E in terms of t, or M ; then v is known from (1.12) , and R S from (1.13) . Ignoring  all of the  

details, it is apparent that v and R S will carry periodicities at one year, 6 months, and all of 

the higher harmonics of the year and all of these frequencies will further split the basic tidal 

lines in Eq. (1.10). Astronomical references give the fundamental parameters as functions of 

time, typically in Taylor series in terms of Julian Centuries, T, of 36525 days. So for example, 

Anonymous (1961, p. 98), gives the mean anomaly, 

◦ ′ ′′ ′′ ′′ 2 M = 358  28 33.00 + 129596579 .10T − 0.54 T + ... (1.16) 

relative to the vernal equinox of 1 January 1950. Note that the mean anomaly is not exactly a 

uniformly increasing angle with time. 

The point marked Υ in Figs. 3, 4 lies along the line of intersection of the plane of the earth’s 
◦ equator and the plane of the ecliptic (the two make an angle of about 23 ). The sun crosses 

the earth’s equator twice per year at the equinoxes with the spring or vernal equinox defined 

as the time when the sun crosses the equator into the northern hemisphere. The point in space 

toward which the line of intersection is directed is called the “First Point of Aries” or the “vernal 

equinox”. This intersection with the solar orbit is used as a reference point for measuring the 

time origin. Because the earth’s rotation pole precesses in space, with a period of about 26,000 
◦ years, the line of intersection moves, westward, completing a 360 rotation in that period of 

time. For conventional astronomical work over short periods of time, one uses a fixed line, e.g., 

its position at noon on 1 January 1950 or 1900. The Milankovitch theory commonly uses the 

position of Υ in 1850, but the geometry can be developed for moving positions. 

For solar tides, the only remaining complication is the fact that the orbital ellipse is not quite 

closed. The point of closest approach of the earth to the sun (perihelion), or of sun to earth 

(perigee), moves counterclockwise in Fig. 4, in the direction of the solar motion. In an absolute 
◦ frame, perigee would take about 110,000 years to go through 360 . But the vernal equinox is 

moving clockwise, towards perigee, and thus relative to Υ, the period is only about 21,000 years. 

To obtain a complete description of the solar tidal disturbing potential, V S /g, one expresses 

θ S , λS , R  S in terms of M (the mean anomaly, not mass) and notes that everything is periodic 

involving three frequencies: one cycle/solar day, 1/T , one cycle per year, 1/T3 , and one cycle 1 
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per 21,000 years, 1/T and all of their harmonics. 6

 

 

By inspection, 

n1 n3 n6 t + t + t 
T1 T3 T6 )] 
(
[


one can write 
)]  



. (1.17) 

∞

[
 (

2πcos V S 

�
= 

g 
n1 ,n3 ,n6 =−∞ 

A (n 1, n3, n6, θ, λ) 
n1 n3 n6 sin 2π t + t + t 
T1 T3 T6 

In practice, only small integers, (n i) are required for very high accuracy (never more than ±5). 

The skipped indices are reserved for the moon and will be explained below. Terms with n = 0  1 

are termed long-period tides, and the form of their spatial structure is A (0, n3, n6, θ, λ) =  

B (0, n3, n ) P (cos θ), with no longitude dependence. n  = 1  terms are the diurnal tides, 6 2 1 
1 

6 1 and A (1, n3, n6, θ, λ) =  B (1, n3, n ) P (cos θ) (cos  λ, sin λ) ;  for n = 2, A (2, n3, n6, θ, λ) =
2 

2 m B (2, n3, n ) P (cos θ) (cos 2λ, sin 2λ) . These are the semi-diurnals. P (cos θ) are the “asso-6 2 l 

ciated Legendre polynomials of order l, and degree m. (A complete development of the tidal 

potential is done wholly in spherical harmonics; Eq.(1.9) is a special case of the “addition 

theorem” for spherical harmonics.) Other tides exist (n = 3  are the ter-diurnals, but are signif-3 

icantly weaker–although they can be observed in the ocean). Fuller derivations and discussion 

can be seen in the references already given. 

Eq. (1.17) is representative of a more general statement: the gravitational tidal disturbing 

potential is a non-linear function of the solar radius and angle (orbital anomaly). In common 

with most non-linear systems, its behavior can be written as a simple sum over the 3 basic 

frequencies and their simple harmonics; generally, all of the amplitudes rapidly diminish with 

harmonic number, ni . 

1.3. Lunar Tides. The underlying principle of the lunar tides is identical: one uses a 

local elliptical approximation to the lunar orbit and the lunar disturbing potential, VL /g, is the 

identical expression to (1.10) with the lunar mass ML and orbital radius RL replacing those for 

the sun, and similarly for the various relative position angles, λL , θL. Lunar mass  is much  less  

than solar mass, but because the disturbing potentials depend upon the cube of the separation 

between the bodies, the close lunar distance “wins”. But the lunar orbital motion is more 

complicated than for the sun, because the position of the moon depends upon the location of 

the sun, but the opposite is not true (to a very high degree of approximation) so that one must 

write terms for the local distortion of the lunar orbital ellipse as the relative sun/moon positions 
2 change (e.g., when aligned, the lunar radius increases slightly) . The lunar orbit is also tilted 

with respect to both the earth’s equator and the plane of the ecliptic so that one has more angles 

to keep track of. The plane of the lunar orbit precesses with a period of about T =18.6 years, 5 
◦ and the perigee point rotates through 360 in a period of about T =8.9 years. But with the 

addition of these three periods (one cycle/month=1/T2 , one cycle/8.6 years, and one cycle/18.6 
4 

2 The orientation of the earth in space, and hence its rotation axis, does depend upon the lunar position, 

and hence the relative separation of sub-solar point and observer does have lunar terms in it. Thus for example, 

there is a change in the earth’s obliquity forced at the 18.6 year lunar period, and which would introduce such a 

periodicity into the insolation function. 
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Label Name Frequency ( ◦ /mean solar day) Period (tropical years) 

f1 1 cycle/lunar day 347.81 2.83×10 −3 

−2 f 2 1 cycle/tropical month 13.18 7.47×10 

f 3 1 cycle/tropical year 0.986 1.0 

f 4 1 cycle/lunar perigee period 0.1114 8.98 

f 5 1 cycle/lunar nodal period 0.0529 18.63 
−5 f 6 1 cycle/solar perigee period 4.71×10 20,940 

T���� 1. The six frequencies and corresponding periods used in normal tidal 

work (periods less than 21,000 years). Equally valid use can be made of the solar 

rather than the lunar day, and of any of the other definitions of a month and year. 

The time origin is generally measured from the vernal equinox at a fixed date. 

This table can be extended to lower frequencies to encompass the Milankovitch 

periodicities below 1 cycle/solar perigee period. –––––––––––––– 

––––––– 

years), one obtains an expression essentially identical 

∞ �V L 
= 

g 
n1 ,n3 ,n6 =−∞ 

A (n 1, n2, n3, n4, n5, n6, θ, λ) 

 

 

to
[

(1.17) , 
(∑ )] 6 ni 2π t i=1 Ti[ (∑ )]cos 

 
(1.18) 

6 ni sin 2π t
i=1 Ti 

with the solar frequencies appearing because they influence the lunar position. There are, once 

again, long-period, diurnal and semi-diurnal groupings. 

1.4. Combined Tides. Customarily, one treats the lunar and solar tides together as 

V/g  = V L /g + V S /g , tabulating them generally in terms of the six numbers n i . The argu-

ments of the cosines are determined by the 6-tuple (n 1, n , ...n 6) called the Doodson number 

(with 5 added in tabulations so as to produce positive numbers). There are details worth know-

ing about, but these are left to the references. Cartwright and Edden (1973) is the most recent 

general expansion. Because the lunar tides are stronger than the gravitational ones, compilers of 

the tidal expansions generally use a mean lunar day rather than the mean solar day. Table 1 (as 

adapted from Doodson, 1921) gives the nominal frequencies and periods used in mean solar days. 

2

At least two different days, three different years and four different months can be defined. 

The frequency corresponding to the solar day is f +f corresponding to the shorter time interval 1 2 

between zenith passages of the mean sun compared to the mean moon. The tropical year, used 

in the table, is defined as the interval over which the sun passes successively through Υ; the 

anomalistic year is the time for successive passages through perigee (and because it is moving 

in the direction of the sun, the anomalistic year is slightly longer. The frequency is evidently 

f 3 − f . Similar relations occur for the differing month definitions; see Anonymous (1961) or 

Smart (1962). 
6 
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The discussion given thus far is adequate for all ordinary tidal purposes, and indeed the 

dependence upon f is often ignored (we have no sealevel records approaching such long periods). 6 

At much longer periods (as are of interest in the insolation problem), one must account for lower 

frequencies present in the solar system and for various additional complexity. For example, the 

earth’s eccentricity varies, and can go through zero. When it re-emerges from zero, the perigee 

point can be at a very large angle from where it was last defined. 

The frequencies fi are irrational multiples of each other. So by choosing the ni , possibly 

using very high values, it is possible to produce with arbitrary accuracy any frequency 

fd = n f + n f + ... + n f (1.19) 1 1 2 2 6 6 

and this possibility has led to a strange numerological literature in which claims are made for 

important tidal forcing at a variety of periods (e.g., deRop, 1971; Keeling and Whorf, 1997). 

But if one actually works out the forcing amplitude at that frequency, they almost always turn 

out to be minuscule and so unimportant. 

2. Thermal Tides 

Munk and Cartwright (1966) recognized that some of the sealevel variability observed at 

semi-diurnal and diurnal periods was due to meteorological phenomena. For example, the daily 

heating and cooling of the ocean surface makes the water column expand and contract. In some 

places there are daily seabreeze effects. To analyze these effects, which otherwise contaminate 

the analysis of the ocean or earth response to the gravitational disturbances, they defined a 

thermal or “radiational” tide forcing function. It is at this stage that tidal theory encounters 

insolation and becomes the Milankovitch problem. They wrote a “radiation function” (I will 

call it the “insolation function”), � �¯ R S 
R=S cos α 0 

ρ S 

¯ R S 
= S 

1/2 
, cos α >  0 (2.1) 0 � �

2 R 1 − 2 (a/RS ) cos  α + (a/R S )S 

= 0, cos α <  0 (2.2) 

¯ where α is the same angle appearing in the tidal potential, S is the solar constant and R is 

the time mean solar distance. One then expands the denominator of (2.1) as before, 
0 S

� � � �
2 ¯ R a a S 

R=S 1 +  P (cos α) +  P (cos α) +  ... , cos α >  0 (2.3) 
R R R 0 1 2 
S S S 

= 0, cos α <  0. (2.4) 

The behavior of R differs from that of V in three ways. (1) It is physically sensible only on 

r = a. (2) The restriction cos α >  0–means that the earth is opaque to radiation and hence 

only the illuminated hemisphere sees a non-zero R. (3)  The  cosα term (that is, P (cos α))1 
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must be retained, as there is no analogue to the centrifugal force which cancels this term in the 

gravitational disturbance. One expands (2.3, 2.4) in Legendre functions, taking full account of 

the vanishing for cos α <  0.


 

The result 

∑


(Munk and 

[
Cartwright, 1966, p. 541) is, 


 

] ¯ R cos α 2n + 1  1(−1)..(3 − n)
+ 

R S 
P (cos α)n 0 ≤ α ≤ π, (2.5) = , 

S R 2 2 2 (4)  ... (2 + n)
n=2,4,6,... 0 S 

and then expression (1.9) is used to calculate R/S0 in terms of the solar position. There will 

evidently be semi-diurnal, diurnal, annual, and perigee frequencies, all of their harmonics and 

all integer multiple sum and difference frequencies. As with the gravitational tides, one must 

work out the actual amplitudes at a given frequency to see if the forcing is significant. Note that 

R as defined is only an approximation: when the solar center is at the horizon with a setting 

sun or rising sun, there is illumination in both hemispheres (no abrupt cutoff with α = 0), and  

the insolation over the ocean would be influenced by atmospheric thickness changes at large α, 

among other issues. 

3. The Milankovitch Problem 

The Milankovitch problem involves calculating Eq. (2.5), but at periods much longer than 

conventionally used in tidal analyses. The main issues are finding accurate expressions for cos α 

and R valid over hundreds of thousands and millions of years. This is a problem of positional 

astronomy which at long periods must account for the changing disturbances of the other planets, 

and over sufficiently long periods the system appears to become chaotic. 

The clearest developments may be those of Rubincam (1994) or Bills (2001). The positional 

astronomy (relative separation of observer and sun) remains identical to the treatment above 

for the radiational tides. The only difference from the treatment of gravity tides and radiational 

forcing is that one must include changes in the orbital parameters on time scales longer than 

the conventional tidal cutoff at the perigee period of 21,000 years. The major new elements are 

S 

the variations in the earth’s obliquity (the angle ε in Fig. 3) and in the eccentricity e. Two 

phenomena dominate the former: the angle of the rotation axis of the earth varies relative to 

the normal to the ecliptic (equivalently, the angle between the equator and the plane of the 

S 

◦ ′ ′′ ′′ 
23 27 8.26 − 46.84ecliptic), which today is about T, that is decreasing, varies between about 

◦ 22 and 25 degrees, and the plane of the ecliptic itself undergoes a forced motion relative to 

the so-called invariable plane. The invariable plane is defined as being perpendicular to the net 

angular momentum axes of the solar system; the motion arises because of interactions of the 

earth with all the other planets. 

Starting with an expression identical to (2.3), Rubincam (1994) omits all terms dependent 

upon λ, thus suppressing all of the daily and higher frequency variations, leaving only the long-

period terms. He then finds, to lowest order (following a correction, Rubincam (2001, Black 
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body temperature, orbital elements, and the


Psychroterm, unpublished manuscript),]Seversmith 
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(3.1) 

Here, M is again the true anomaly, ω the angle of perigee, as is the semi-major axis of the solar 

orbit. Any terms having M in the argument will average to zero over the course of a year; thus 

by eliminating them, one can isolate the insolation changes at periods longer than a seasonal 

cycle, in which case Eq. (6.1) reduces to,∣∣∣∣
( ) { � � � ��  ��2 ¯ 2 2 

R Rs 1 e 5 e 3 1 
= 1 + + P2 (cos θ) 1 +  sin 2 ε − , (3.2)S 

S as 4 4 16 2 4 2 
NS  

so that the only non-seasonal effects enter from the variations of eccentricity e, and obliquity, 

ε . Because e is very small, and appears to remain so over the history of the solar system, the S 

dominant non-seasonal forcing arises from ε . A Fourier analysis of (6.2) as computed by Bills 

(2001) is shown in Fig. 5. One sees energy around 41,000 years period, albeit split into several 

nearby frequencies, as one has come to expect. There is a very slight peak near 100,000 years 

owing to variations in  e near that period. 

Expression (6.2) is not completely intuitive. The fundamental geometric effect is the depen-

S 

−2 −3 −2 dence of insolation upon ρ 
S , ρ  , ..., the earth-observer distance. Averages over a year of ρ 

S S , 

etc. differ, depending upon the latitude and inclination of the observation point. If the incli-
2 2 nation is large, with 3/4 sin  ε > 1/2, then because P (cos θ) =  (3/2) cos θ − 1/2 < 0 on the 

equator (θ = π/2), the contribution is negative and hence there is reduced tropical insolation 
S 2 

compared to the poles. At the limit, ε = π/2, the sun is in a polar orbit about the earth. S 

If ε = 0, the equator has enhanced insolation relative to the poles. The two effects, polar S 
2 amplification, and equatorial amplification just compensate when 3/4 sin  ε − 1/2 =  0, or near S 

◦ ◦ 54 . With an actual inclination near 23 , the mean effect is to enhance tropical insolation, and 

the time variability of ε modulates the intensity of this difference, changing the annual mean 

radiation as a function of latitude. Hence obliquity variation has a direct effect on the intensity 

of the received radiation. 

Rubincam (1994) makes the extremely important point that to the extent the climate system 

responds linearly to variations in R, only the obliquity variations near 41,000 years period are 

expected to produce climate change. In particular, the terms in (6.1) with periodicities involving 

the precession, e.g. sin (ω + M) , vanish if averaged over a period near one year, and can only 

appear in the climate system if some element in it responds to the amplitude of the seasonal 

S 
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F����� 5. Power density spectrum of the long period terms in insolation, Eq. 

(6.2) from a calculation of duration 2 MY sampled at intervals of 1KY. Vertical 

lines show the dominant obliquity period of 41KY and the two main precessional 

terms at 23 and 19KYR. The latter are essentially absent in a year-long average. 

The eccentricity term at 100KY is very small. (From a time series of B. Bills, 

2001) 

cycle. That is to say, all forcing terms like sin (ε S ) sin (ω + M ) lie very close to the frequency 

dM/dt, that is a cycle/year. If the response is observed instead, near frequency dω/dt, one  

has somehow rectified the annual cycle: such a response is intrinsically non-linear. In a linear 

system, the response would be confined to frequencies very near d (ω + M ) /dt ≈ dM/dt, and 

nothing would be visible near dω/dt. This point does not seem to have been widely appreciated. 

One way of retaining the dependence on ω despite the vanishing of the seasonal average, is 

to postulate a dependence upon the value of the insolation at a particular time of year, e.g., 

that the growth of an ice sheet depends only upon the insolation in the summer months, or over 

some particular month or fraction of a year. Such a response is an intrinsically non-linear one, 

as  it  corresponds to  a  rectifier in  what  is sometimes  known  as  a  ν−th law device. One algebraic 

representation is to postulate that the response to the sinusoidal forcing is of the form, 

ν y (t) =  |cos ω cos M | , cos (ω + M ) > 0, (3.3) 

= 0, cos (ω) cos(M ) < 0. 

As ν →∞, y  (t) is dependent primarily upon the maximum value of the cosine. Such rules are 

analyzed in detail by e.g., Davenport and Root (1958), or Middleton (1960). The main point 

is that a dependence upon seasonality in producing a precessional period requires a non-linear 

system. In such a system, one would anticipate specific structures in the spectrum as clues to 
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the physics. Simple rules such as Eq. (7.2) produce a dominant low frequency response at the 

first harmonic, 2ω, rather than at ω, but related systems exist with response at or near ω, for  

example by considering the rule 

ν y (t) = |(1 + a1 cos ω) cos  M | , cos (ω + M) > 0, (3.4) 

= 0, (1 + a1 cos ω) cos  M < 0, 

where a1 < 1 is a constant. Such a rule would more realistically represent an insolation curve 

in which the dependence on ω was a perturbation on top of a mean seasonal cycle. 

Unfortunately however, any recording device with a similar response will produce purely 

apparent rectified signals. Consider for example, coccoliths or diatoms, other biological elements 

whose growth, q (t) , occurs only in summer months. Then q (t) will obey a rule analogous to 

(3.4), perhaps modified by the requirement of a minimum threshold greater than 0, and  there  

will then be low frequencies present in the geological record having nothing to do with the 

climate signals themselves, and reflecting only the recording device. Such possibilities present 

serious complications to the analysis of climate change: consider e.g., loess deposits which only 

occur when the wind speed and duration exceed certain thresholds. 

4. Analysis 

Serious tidal analysis in modern form began in the Nineteenth Century and is associated with 

the names of Whewell, Kelvin, etc. (see Cartwright, 1999). The relevance for the Milankovitch 

problem is that tidal analysis long ago confronted the problem of understanding forced, strictly 

periodic motions, in the presence of other motions usually best described as random or stochastic. 

The experience, and tools developed, are thus directly useful for understanding forced insolation 

changes, up to the differences in the nature of the forcing. Tidal signals exist in almost every 

geophysical time series from the ionosphere to temperature changes at the bottom of the ocean 

to the deformation of the earth. In many of these records, the tidal motions are relatively weak, 

and one may have to work hard to extract them. In sealevel, the most studied of tidal records, 

often 99% of the variance lies in the tidal bands, depending upon the record lengths, (see Wunsch 

and Stammer, 1998), and one has an unusual and (for the tidal analyst) happy situation of a 

very large signal-to-noise ratio. 

There are two basic approaches to understanding tidal signals in records of any sort, no mat-

ter what the signal-to-noise ratio: (1) in the frequency domain, and (2) in the time domain. The 

approaches are completely equivalent, able to produce identical information (see, e.g., Chapter 

1, or Munk and Cartwright, 1966). The main differences are those of convenience, both in the 

implementation of numerical analysis algorithms, in the ease with which one can impose various 

a priori physical constraints on the analysis, and then interpret the result. 

4.1. Frequency Domain Analysis. Historically, frequency domain analysis emerged first 

(associated largely with Lord Kelvin), and it remains today the most widely used, and more 

readily physically interpretable approach. The physical interpretation is accessible because most 
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of us tend to think of many physical phenomena as characterized by their basic frequencies, and 

we expect physics to be different in different frequency bands (e.g., high frequency ripples on 

the ocean surface have a different set of governing equations than does low frequency swell). 

Beyond that, the hypothesis of linearity of a physical system says that if one forces a linear 

system at a frequency s, then  the response will  occur  only at that same frequency,  with at most  

an amplitude and phase shift relative to the forcing. For ocean tides (and most tides in the real 

world), this is an excellent first approximation; it does fail in some places. 

The tidal forcing potential Eq. (1.10) says the forcing of the ocean (I will speak of the ocean, 

but the comments apply to any part of the geophysical system), can be regarded as a linear sum 

of pure frequencies, si given by the  Doodson numbers  and with  an amplitude one  can either  

look up in published tables, or (these days), obtain numerically from a computer. The forcing 

has some amplitude, H (si ) and phase, η (si ), which we can, without any loss of generality take 

to be zero (simply implying a shift in time origin). The hypothesis of linearity asserts that the 

ocean response will be at this same frequency, with amplitude A (si ), and  phase  γ (si ) . The 

amplitude and phase will depend upon the physical variable being analyzed (surface elevation, 

water velocity, temperature, pressure, etc.). We learn about the ocean by trying to understand, 

from the equations of motion of the fluid, why A/H, γ − η have their particular values and how 

and why they vary with frequency and location. 

In pre-computer days, clever algorithms for hand calculation were developed to minimize the 

huge analysis labor (see Schureman, 1958). Today, computers rapidly calculate A, γ from long 

records. The process is related to, but somewhat different from, ordinary Fourier analysis, simply 

because the tidal frequencies are not integer multiples of each other, and one has to modify the 

usual procedures (there are several ways to do that). Complications arise in a number of ways. 

One important  one is  that one  must  account for  the presence in  A, γ of contributions otherwise 

present in the ocean, but unrelated to the tides themselves. 

Because the tidal forcing contains nearby frequencies, they are often not “resolved”, that 

is separated from each other in frequency (see Chapter 1, or any book on Fourier analysis). 

Unseparated lines will have an apparent amplitude and phase dependent upon the relative 

amplitudes and phases of the unseparated frequencies, as well as the actual time interval being 

analyzed, and one must correct for the effect. Consider the sum of two nearby sinusoids, 

H1 sin 2πs1 t + H2 sin [2π (s1 +∆s) t − η] , ∆s/s1 << 1 

= A sin (2πs1 t − β) , 
�1/2 

(4.1) 
� 

2 2 A = H1 + H2 + H1 H2 cos (2π∆st − η) , 

β = − arctan (H2 sin (2π∆st − η) / (H1 + H2 cos (2π∆st − η))) (4.2) 

that is, with a slowly (depending upon ∆s), changing amplitude and phase. Standard tabulations 

left the 18.6 year-nodal regression terms unresolved, and d tabulated the slowly changing A, β 

as the apparent amplitude and phase (called f, u) of the unresolved lines (Schuremann, 1958). 
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The other issue is that the physics could conceivably change in the small frequency interval 

∆s, e.g., owing to a resonance (these exist, but are comparatively rare in the real ocean). 

The Milankovitch forcing has been treated, generally, in similar frequency domain ways. 

It helps to have a slightly more general notation. Let ζ (t) be any physical variable thought 

to exhibit tidal or Milankovitch responses. Denote the Fourier transform of any variable by a 
ˆ carat, e.g. the Fourier transform of ζ (t) is ζ (s) where s is the frequency. Let q (t) be either 

Milankovitch or tidal forcing, or the sum of the two. Then the hypothesis of a linear response 

is readily shown to be equivalent to, 

ˆ ˆ ζ (s) = h (s) q̂ (s)
�
�
� 

(4.3) 

and shifts it 
�
�
�frequency s, multiplies the forcing by� � � � �� 
ˆ h (s)so that the response at an amplitude 

−1 ˆ ˆ by a phase β (s) = tan  Im h (s) / Re h (s) , where Im, Re denote the real and imaginary 

ˆ ˆ parts of h (s) . No other relationship is consistent with the linearity hypothesis.� h (s) is some-��� ��ˆ times called the admittance or “transfer admittance” function. H (si ) =  h (si ) , η  (σi ) = β (si ) 

above. Understanding the relationship between Milankovitch and/or tidal forcing and the sys-

tem response can be viewed as an attempt to find the transfer function. A limitation is that as 

we have seen q̂ (s) only has non-zero amplitude in rather narrow frequency bands surrounding 

the basic astronomical frequencies. An explicit attempt to find a transfer function can be seen 

in Wunsch (1972). 

4.2. Time Domain Analysis. The hypothesis that the system response to an arbitrary 

forcing is a linear one has the time domain equivalent of (4.3), which is, 
∞

� � � � � 
� � � ζ (t) =  h t q t − t dt , (4.4)

−∞ 

that is, a “convolution”. In most data analysis with computers, one uses sampled functions, at 
3 intervals ∆t and writes (4.4) as a summation , 

∞� 
ζ (n∆t) =  h (m∆t) q (n∆t − m∆t) , (4.5) 

m=−∞ 

or more concisely, 
∞� 

ζn = hmqn−m. (4.6) 
m=−∞ 

In practice, one cannot run sums to infinity, and there is no need to. The problem of under-

standing the behavior of a linear system then becomes that of finding approximating values hm. 

The equivalence of (4.6 and 4.3) follows from the “convolution theorem”, which asserts that the 

Fourier transform of a convolution sum as on the right of (4.6) is the product of the Fourier 

transforms of the two functions appearing (see e.g., Wunsch, 2000). 

There are various dimensions (units) to keep track of in moving from an integral to a sum. Often one sets 

∆t = 1, suppressing the units, but they come back to haunt one eventually. 

3 
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F����� 6. From Munk and Cartwright (1966) showing the diurnal band fre-

quencies separable at one cycle/year as well as an analysis of the behavior of the 

tides at Honolulu (see the text). None of the frequencies lies very far from 1 

cycle/lunar or solar day. 

Several ways exist to determine the hm in (4.6) using finite upper and lower limits (which 

must be determined). The most straightforward way is through ordinary least-squares, finding 

the minimum over hm of, 

∑



N2

ζn 

n=−N1 m=−N1 


 

2 

hmqn−m . (4.7) 
N2 

2
�

δ = − 

The standard reference on this subject is Munk and Cartwright (1966) who discuss choices of 

∆t, N1,N2, etc. 

As a summary statement, Figs. 6, 7 show an analysis by Munk and Cartwright (1966) in both 

frequency and time domains of the tide gauge record at Hawaii. The uppermost panel in each 

2

2 

figure shows the energy in the diurnal and semi-diurnal bands respectively, the first proportional 
1 P 

the clustering (the clusters are separated by multiples of a cycle/month, and within the clusters, 

to the spherical harmonic P
2 (cos θ) (cos  λ, sin λ) , the second to (cos θ) (cos 2λ, sin 2λ). Note 
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F����� 7. Same as Fig. 6 except for the semi-diurnal band (notice the different 

frequency scales in the two figures). See the text for explanation of the panels. 

they are separated by multiples of one cycle/tropical year) and the large frequency gap between 

the diurnals and semi-diurnals. Lines separated by multiples of one cycle/8.9 years or 18.6 

years are unresolved here. The 2nd and 3rd panels from the top show the “coherence”-squared 

between the forcing (V/g) and the tide gauge record. The black bar shows the coherent part 

(the fraction of the variance explained by the forcing in that frequency band). Two plots are 

required because in a logarithmic display one cannot show additive powers and if one or the 

other of the coherent or incoherent power is much less than �
� 
� 

�
� 
�

the other, it will 
ˆ h (si ) , β  (s

be visible on only 

at Honolulu, and one of the two plots. The lowest panel shows the estimated i ) 

ˆ the panel above displays the equivalent real and imaginary parts of h (si ). Points indicate 

the frequencies of actual tidal energy. The smooth curves are obtained by making assumptions 

about the behavior of hm; see Munk and Cartwright (1966) for details. These lower curves 

were first obtained in the time domain from Eq. (4.7) , and then Fourier transformed to obtain 

the figures. Generally speaking, most people find the frequency domain representation easier to 

understand, even when the time domain method is used. 

The time domain method has a number of virtues and will probably become the method of 

choice for testing the Milankovitch hypothesis in cores, but the effort is only starting. There is 



118 3. EXAMPLES IN CLIMATE CHANGE. 

one variant on what Munk and Cartwright (1966) called their “response method”. If one solves 
2 ˜ the least-square problem of minimizing δ , the coefficients so estimated, hm, tend to be very 

sensitive functions of N1 ,N2 although their Fourier transforms are more stable and interpretable. 

Groves and Reynolds (1975) suggested working with an orthogonalized set of hm, a suggestion 

explored by Alcock and Cartwright (1978), with some degree of success. Bills (2001) starts the 

use of this method in the Milankovitch problem. 

5. Detection of Non-Linearities 

As noted above, the existence of precessional effects in the climate system appears to require 

important non-linearities in the response to insolation. Furthermore, many of the rationaliza-

tions of the 100KY response in the climate system demand non-linear interactions. One thus is 

driven to understand the extent to which the records display non-linear characteristics, and in 

what form. 

As with non-linear systems in general, techniques for analysis tend to be more ad hoc and less 

general than methods characterizing linear systems, partly because the nature of possible non-

linearities is so wide. In geophysics in the widest sense, as with most mathematical approaches, 

one  hopes  to  begin with an assumption of weak non-linearity, so that perturbation methods  can  

be used. As written, Eq. (7.2) represents a fully-non-linear response, but if we modified it to 

ν y (t) =  A cos [(ω + M) t− β] +  δ |cos (ω + M) t| , cos (ω + M) t >  0, (5.1) 

= A cos [(ω + M) t− β] , cos (ω + M) t <  0, δ <<  1, 

the response has a linear component. Note that the modern climate system does have, in some 

elements, a major seasonal response, which is mimicked by (5.1). One might hope to determine 

the magnitude of δ. 

A few general techniques exist. To the extent that the frequency function (probability 

density) for a time sequence yt is Gaussian, there is prima facie evidence of a linear system, 

because if the input to a linear system is Gaussian (normal), it is readily shown to remain 

normally distributed. Here “normal” would carry over to the joint probability density as well, � � 
� ��� p y (t), y (t ) , y (t ), ... . Various tests exist for significant deviation from normality. Of course, 

if the input function is itself non-normal, then nothing is proved about the system by a failure 

to be non-normal, and one is driven to understand the transformation of the probability density 

by passage through the climate system, if possible. 

Because the physics of the system changes with frequency, one often seeks non-linearity as a 

function of frequency. Consider that for a stationary Gaussian time series, a complete statistical 

description is contained in the mean, and the second moments R (τ) =< y (t) y (t+ τ) > .  

The Fourier transform of the autocovariance, R (τ) is just the power density spectrum (by the 

Wiener-Khinchin Theorem). The latter can be written as 

∗ y (s) ˆF (R (τ)) = Φ(s) ∝ 〈ˆ y (s) 〉 



5. DETECTION OF NON-LINEARITIES 119 

Here, F denotes the Fourier transform, ∗ is the complex conjugate, and the brackets indicate 

expected value. Hence the mean, and the ordinary power density spectrum completely describe 

a (jointly) Gaussian time series. But if the process is not Gaussian (and, a complication, if it 

is not stationary), the power density is no longer a complete description of the time series. One 

is led to compute the higher order moments 

〈ˆ y (s2 ) ˆy (s1 ) ˆ y (−(s1 + s2 ))〉 . (5.2) 

These quantities, usually called the bi-spectrum can be shown to vanish for a Gaussian process 

(see Hasselmann et al., 1963; Haubrich, 1965, Elgar and Sebert, 1989, among others). As with 

an ordinary cross-power, the behavior of the bispectrum is complicated by variations in the 

ˆmagnitude of y (s) with s, and one is led to normalize it to the “bicoherence”, 
∗ 〈ˆ y (s2 ) ˆy (s1 ) ˆ y(s1 + s2 ) 〉 

C (s1 , s2 ) =  �� �� ��1/2 
. (5.3) 

2 2 |y (s1 ) ˆ ˆˆ y (s2 )| |y (s1 + s2 )| 

Eqs. (5.2, 5.3) represent estimates of the third moments. Tri-spectra, involving fourth moments, 

and even higher moment spectra may also be required and be informative. 

Time domain methods also exist. Suffice it for the moment to point out that simple gener-

alized autoregressive models, e.g., 

2 yt = ayt−1 + by + θ tt−1 

are possible, with an infinite number of variations. 

.... 
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Rectification and Precession-Period Signals in the Climate

System


Carl Wunsch


6. Introduction 

Some of the published interpretation of the climate record gives the appearance of con-

trivance. For example, Schulz (2002) “explains” a sharp peak in the spectrum as the result of 

a particular combination of three Dansgaard-Oeschger events, with an argument that is com-

pletely opaque. One of the more fraught parts of the climate discussion concerns the appearance 

of Milankovitch cycles in certain climate proxies (any textbook...). Setting aside the 100KY 

band, which appears in practice to have little or nothing to do with the Milankovitch forcing, 

the Milankovitch forced energy is largely, but not wholly, within two bands around 41KY and 

21KY–the obliquity and precessional bands respectively. 

The obliquity band generates a low frequency shift in the distribution of insolation on the 

earth. In contrast, the precessional band is the result of a very indirect effect. As Rubincam 

(1992) points out, the precessional terms in insolation variability change the amplitude of the 

annual cycle, but do not themselves contain any low frequency components. His expression for 

insolation is, [ ] 
e2 

1 5 2 
0 P (cos θ) 1 +  + 2e cos M + e cos 2M + 

4 4 2 
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P (cos θ) +2e sin ε − cos M + e sin ε cos (2ω + M )S S 4 2 4 
2 16 9 2 5 2 3 2 1 − e sin ε cos (2ω + 3M ) +  e 

( 
sin ε − 

) 
cos 2M S S 4 2 4 2 39 2 2 

− e sin ε cos (2ω + 4M ) +  ... S 8 
(6.1) 

Here R is the net radiation, S is the solar constant, e is eccentricity, M is the true anomaly, ε S 
¯ is the obliquity, and ω is the angle of perihelion relative to the vernal equinox. R S is the mean 

solar distance, and as is the semi-major axis of the Earth orbit. Terms in M have a one-year 

periodicity. In particular, the perihelion change is reflected in the value of ω. Inspection of (6.1) 

shows that ω appears only in linear combination with M in the argument of sines and cosines. 
˙ ˙Numerical values of the rates of change of these angles are ω ≈ 2π/21KY, M ≈ 2π/365d, 

Terms for example, like sin (ω − M) have periods differing from that of M only by one cy-

cle/21,000 years (approximately)–that is have periods hardly differing from a year. It can be 

confirmed from (6.1) that the only appearance of ω is in such combinations. Thus (6.1) has no 

insolation variation terms near the precessional period of approximately 21,000 years. If terms 
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having M in the argument are suppressed, the non-seasonally varying insolation is, � �2 � � � � ��  ��
2 2

� 
�
� 
� 

¯ RsR 1 e 5 e 3 1
2 = 1 + + P2 (cos θ) 1 +  sin ε S − (6.2) , 

as 4 4 16 2 4 2S 
NS  

which, as Rubincam (1992) pointed out, has no contribution involving ω. 

7. Obtaining a Precessional Period—Rectification 

It may surprise some readers that precessional terms do not generate any insolation period-

icities around the precessional periods. (Note that the true precessional period is about 26,000 

years; for climate purposes, it is the period relative to the vernal equinox which matters–and 

the vernal equinox moves toward the shifting perihelion so that the apparent period is closer 

to 21,000 years; there is more structure than a single line frequency, however). To obtain a 

contribution in the precession band, it has become customary to claim that climate depends 

only upon the insolation during some fixed season, or time, e.g. summer, or a particular day in 

August. Such a rule (for which there seems little direct support), immediately introduces the 

precessional periods into the climate forcing, because it represents, mathematically, a rule for 

rectification of insolation. 

Consider as an example one of the terms in (6.2), 

F = cos (ω + M) =  cos  ω cos M − sin ω sin M (7.1) 

which can be regarded as either a cosine at frequency ω + M, or the sum of two amplitude 

modulated “carriers”, cos M, sin M , with amplitude modulations cos ω, sin ω. In any case, the 
˙ ˙ ˙ ˙peridocity is at a frequency ω̇+ M ≈ M,  because ω <<  M,  and the  forcing averages to zero over  

any integral multiple of durations 2π/ (ω + M) , that is over one year. The spectrum of such 

a forcing would be a δ−function at frequencies ± (ω + M) . If (7.1) is used, one can consider 

the effects of the two terms on the right separately, and also of their interaction, each being an 

amplitude-modulated signal. 

Now let us suppose, following the very large literature on Milankovitch forcing, that the 

climate system responds e.g., only to summer insolation. That is, in this simple case, only when 

F is positive, which can be written as, 

F1 = cos  (ω + M) , cos (ω + M) > 0 

= 0, cos (ω + M) < 0. (7.2) 

That is, only the positive values force the system. Eq. (7.2) is an example of what is called a 

“half-wave rectifier” (see Davenport and Root, 1958; Middleteon, 1960) and has a quite different 

spectral structure than does (7.1). The simple supposition that only positive (summer) values 

are important immediately changes the frequency content of the forcing. 

Although the standard analysis is in terms of rules such as that in Eq. (7.2), insolation 

amplitudes never go to zero, and a form more relevant to the insolation problem is of the form, 

F =(1  +  δ1 cos 2πsa t) cos  (2πs t − φ) . (7.3) 0 



124 3. EXAMPLES IN CLIMATE CHANGE.

10
-4

10
-3

10
-2

10
-1

10
0

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

FREQUENCY

P
O

W
E

R
/U

N
IT

 F
R

E
Q

U
E

N
C

Y

nw=2,half-wave rect.  28-Oct-2002 20:35:05  CW

s
a
 

s
0
 

F����� 8. Diamonds are the power density spectrum of the original modulated

carrier wave Eq. (7.3) plus a small amount of white noise. There is no excess

energy at the modulation period 1/sa. Solid line is a power density spectral

estimate of the signal, from the half-wave rectifier. Now excess energy appears

at period 1/sa as well as at the periods of all the harmonics of s0.

Here, s0 =M is the “carrier”, and sa = ω is the “modulation” frequency. We assume sa << s0.

|δ1| < 1 because we are interested in modulations whose amplitude varies the intensity of the

carrier wave, without ever reducing its amplitude to zero at low frequencies, consistent with the

behavior of solar insolation at the annual frequency. The half-wave rectifier now becomes,

F1 = (1 + δ1 cos 2πsat) cos (2πs0t− φ) , (1 + δ1 cos 2πsat) cos (2πs0t− φ) > 0

= 0, (1 + δ1 cos 2πsat) cos (2πs0t− φ) < 0. (7.4)

Fig. 1 displays the power density spectrum of forcing (7.1) and (7.2). F has no energy near ω̇,

while the rectified F1 does.

It is found, empirically, that the phase of the energy at s = sa is independent of the phase φ

(should be done analytically). This result is an important one: it says that the apparent phase

of the rectified signal is not dependent upon φ, that is not dependent upon where, during the

year, a maximum in forcing is reached.

Evidently, the supposition that the response of climate to insolation forcing is determined

by the summer values seprately is a form of rectifier, producing through the non-linearity, a

response at sa = ω, and is a specific and strong hypothesis about the physics of the system. It

is possible that such a process is operating (although the environment at most places today is

dependent upon the climate globally through wind systems and moisture and heat fluxes).
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Perhaps the most worrisome aspect of this hypothesis however, is that exactly the same effect 

can be produced not by the climate system, but by the “recording devices.” These recording 

devices can be foraminfera that grow only during one season, or any tracer laid down by, e.g., a 

windfield confined primarily to one month or season. Separating a dynamical rectification from 

an “instrumental” rectification will be a very difficult problem. It is possible therefore, that the 

inferred precessional signals are an artifact of seasonal biases in growth, wind, or temperature 

patterns, among other possibilities. 

The supposition that the records are half-wave rectifiers can be generalized to so-called ν−th 

law devices (Davenport and Root, 1958; Middleton, 1960), with 

ν 
F = [(1  +  δ1 cos 2πsa t) cos  (2πs t − φ)] , (1 + δ cos 2πsa t) cos  (2πs t − φ) cos  (ω + M) > 01 0 1 0 

= 0, (1 + δ cos 2πsa t) cos  (2πs t − φ) < 0, ν  >  0. (7.5) 1 0 

These textbooks find general analytical expressions for the response to such devices, albeit the 

results bristle with hypergeometric functions; most readers would probably find it simpler to 

compute the results empirically. As ν → ∞, F is dominated by the maximum value of the 

cosine products, permitting one to allow the forcing response to be dependent, should one wish, 

upon a single day, rather than an entire six months. Qualitatively, the results do not differ from 

what we have seen with the half-wave rectifier, but there are definitely quantitative changes. 

1 

8. A Potential Positive Aspect 

If one is willing to assume that the appearance of precession frequencies is dominated by 

the instrumental effect, it can be put to use. Suppose that a preliminary age model has been 

developed that produces identifiable excess energy in the precession band (e.g., Huybers and 

Wunsch, 2002), not using any orbital information. Taking the results above at face value, the 

˙precessional signal should have a fixed phase at s = ω/2π irrespective of whether the growing 

season or wind field maximum (to take only two examples) varies during the year (that is, 

independent of φ). Even if the maximum shifts from April to August, the precession signal has 

a fixed phase. By doing a narrow band pass filtering operation on the record, a second stage 

of tuning the age model could be carried out by forcing the precession period signal to a fixed 

phase. I have no idea if this is practical or not. 
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