Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.115.216806</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Tue Mar 15 23:02:49 EDT 2016</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/100020</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials

Inti Sodemann and Liang Fu
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 11 August 2015; published 20 November 2015)

It is well known that a nonvanishing Hall conductivity requires broken time-reversal symmetry. However, in this work, we demonstrate that Hall-like currents can occur in second-order response to external electric fields in a wide class of time-reversal invariant and inversion breaking materials, at both zero and twice the driving frequency. This nonlinear Hall effect has a quantum origin arising from the dipole moment of the Berry curvature in momentum space, which generates a net anomalous velocity when the system is in a current-carrying state. The nonlinear Hall coefficient is a rank-two pseudotensor, whose form is determined by point group symmetry. We discuss optimal conditions to observe this effect and propose candidate two- and three-dimensional materials, including topological crystalline insulators, transition metal dichalcogenides, and Weyl semimetals.

Introduction.—The Hall conductivity of an electron system whose Hamiltonian is invariant under time-reversal symmetry is forced to vanish. Crystals with sufficiently low symmetry can have resistivity tensors which are anisotropic, but Onsager’s reciprocity relations [1] force the conductivity to be a symmetric tensor in the presence of time-reversal symmetry. Hence, when the electric field is along one of the crystal axes the current and the electric field are collinear, at least to the first order in electric fields. However, this constraint is only about the linear response and does not necessarily enforce the full current to flow collinearly with the local electric field.

In this Letter we study a special type of such nonlinear Hall-like currents. We will demonstrate that metals without inversion symmetry can have a nonlinear Hall-like current arising from the Berry curvature in momentum space. The conventional Hall conductivity can be viewed as the zero-order moment of the Berry curvature over occupied states, namely, as an integral of the Berry curvature within the metal’s Fermi surface. The effect we discuss here is determined by a pseudotensorial quantity that measures a first-order moment of the Berry curvature over occupied states, and hence we call it the Berry curvature dipole. This nonlinear Hall effect has a quantum origin arising from the anomalous velocity of Bloch electrons generated by the Berry curvature [2], but it is not expected to be quantized.

In a time-reversal invariant system, the Berry curvature is odd in momentum space, \(\Omega_a(k) = -\Omega_a(-k) \), and hence its integral weighed by the equilibrium Fermi distribution is forced to vanish, because Kramers pair states at \(k \) and \(-k \) are equally occupied. However, the second-order response is determined by the integral of the Berry curvature evaluated in the nonequilibrium distribution of electrons computed to first order in the electric field. Since the nonequilibrium current-carrying distribution is not symmetric under \(k \rightarrow -k \), the integral of the Berry curvature weighed by it can be finite, leading to a net anomalous velocity and hence a transverse current.

Our study builds upon a seminal work by Moore and Orenstein [3], which predicted a dc photocurrent in quantum wells without inversion symmetry due to the anomalous velocity associated with the Berry phase. The quantum nonlinear Hall effect presented here can be regarded as a generalization of this effect. We predict that an oscillating electric field can generate a transverse current at both zero and twice the frequency in two- and three-dimensional materials with a large class of crystal point group symmetries. In particular, the second harmonic generation is a distinctive signature that may facilitate the experimental detection of the quantum nonlinear Hall effect. Additionally, the effect does remain finite in the dc limit of the applied electric field.

General theory.—The electric current density is given by the integral of the physical velocity of the electrons \(v_a \) weighed by their occupation function \(f(k) \):

\[
 j_a = -e \int_k f(k) v_a .
\]

For simplicity, we imagine a single band system but allow it to be two or three dimensional: \(\int_k \equiv \int \text{d}^d k / (2\pi)^d \). The velocity contains two contributions, namely, the group velocity of the electron wave and the anomalous velocity arising from the Berry curvature [2] (\(\hbar = 1 \)):

\[
 v_a = \partial_a \epsilon(k) + \epsilon_a b c \Omega_b k_c ,
\]

where \(\partial_a = \partial / \partial_{k_a} \), \(\epsilon \) and \(\Omega_b \) are the energy dispersion and the Berry curvature of the electrons in question:

\[
 j_a = -e \int_k f(k) v_a .
\]
\[\Omega_k \equiv \epsilon_{abc} \partial_b A_c, \quad A_c \equiv -i \langle u_k | \partial_c | u_k \rangle. \] (3)

Within the Boltzmann picture of transport, the canonical momentum of electrons changes in time in response to the external electromagnetic fields. In the absence of external magnetic fields, the change of momentum is

\[\dot{k}_c = -eE_c(t), \] (4)

where \(E_c(t) = \text{Re}\{\mathcal{E}_c e^{i\omega t}\} \), with \(\mathcal{E}_c \in \mathbb{C} \) the driving electric field which oscillates harmonically in time but is uniform in space. In the relaxation time approximation, the Boltzmann equation for the distribution of electrons is [4]

\[-e \tau E_a \partial_a f + \tau \partial_t f = f_0 - f, \] (5)

where \(f_0 \) is the equilibrium distribution in the absence of external fields. We are interested in computing the response to second order in the electric field; hence, we expand the distribution up to second order: \(f = \text{Re}\{f_0 + f_1 + f_2\} \), where the term \(f_n \) is understood to vanish as \(\mathcal{E}^n \). One finds a recursive structure:

\[f_1 = f_0 e^{i\omega t}, \quad f_1' = e \mathcal{E}_a \partial_a f_0, \]
\[f_2 = f_0^2 + f_0^2 e^{2i\omega t}, \quad f_2' = \frac{(e \mathcal{E}_a \mathcal{E}_b \partial_{ab} f_0)}{2(1 + i\omega \tau)}, \]
\[f_2'' = \frac{(e \mathcal{E}_a \mathcal{E}_b \partial_{ab} f_0)}{2(1 + i\omega \tau)(1 + 2i\omega \tau)}. \] (6)

Writing the current as \(j_a = \text{Re}\{j_a^0 + j_a^{2\omega} e^{2i\omega t}\} \), one obtains

\[j_a^0 = \frac{2}{e} \int_k \epsilon_{abc} \Omega_b \mathcal{E}_c f_0^0 - e \int_k f_0^0 \partial_c \epsilon(k), \]
\[j_a^{2\omega} = \frac{2}{e} \int_k \epsilon_{abc} \Omega_b \mathcal{E}_c f_0^{2\omega} - e \int_k f_0^{2\omega} \partial_c \epsilon(k). \] (7)

The term \(j_a^0 \) describes a rectified current while the term \(j_a^{2\omega} \) describes the second harmonic. The second terms that appear in Eq. (7) are completely semiclassical and do not require the presence of Berry curvature. However, within the approximation of a constant \(\tau \), one finds that these nonlinear terms are proportional to the integral of a three-index tensor, \(\partial_c \epsilon(k) \partial_{bc} f_0(k) \), which is odd under time reversal and, hence, they are forced to vanish. Therefore, the only surviving terms are those associated with the Berry curvature. By writing \(j_a^0 = \chi_{abc} \mathcal{E}_b \mathcal{E}_c, \quad j_a^{2\omega} = \chi_{abc} \mathcal{E}_k \mathcal{E}_c \), one has [5]

\[\chi_{abc} = \epsilon_{abc} \frac{e^3 \tau}{2(1 + i\omega \tau)} \int_k (\partial_b f_0) \Omega_d. \] (8)

The presence of the factor \(\partial_b f_0 \) will guarantee that only states close to the Fermi surface will contribute to the integral in the low temperature limit, so that this response is a Fermi liquid property [6]. Equation (8) can be rewritten as follows:

\[X_{abc} = -\epsilon_{abc} \frac{e^3 \tau}{2(1 + i\omega \tau)} \int_k f_0 (\partial_b \Omega_d). \] (9)

This expression [Eq. (9)] for the nonlinear conductivity tensor, \(X_{abc} \), is the first main result of this work. It shows that \(X_{abc} \) is proportional to the dipole moment of the Berry curvature over the occupied states, defined as

\[D_{ab} = \int_k f_0 (\partial_a \Omega_b). \] (10)

It is interesting to note that this tensor is dimensionless in three dimensions. At frequencies above the width of the Drude peak \(\omega \tau \gg 1 \) and below the interband transition threshold, the prefactor in \(X_{abc} \) becomes independent of the scattering time, so that \(X_{abc} \) directly measures the quantum geometry of the Bloch states. In the dc limit or for linearly polarized electric fields, the Berry curvature dipole term always produces a current that is orthogonal to the electric field \(j_a E_a = 0 \) [7].

To close this section, we wish to remark that there exist additional second-order corrections to the current arising from modifications to Eq. (2) that are intrinsic to the band structure, containing no powers of the scattering time \(\tau \) [8]; however, these contributions vanish for time-reversal invariant systems. Other type of rectifications might arise in systems with an inversion asymmetric scattering rate, namely, when the scattering from \(k \) to \(k' \) has a different rate than that from \(-k \) to \(-k' \), which produces a kind of ratchet effect [9]. These semiclassical Berry-phase independent contributions are distinguished from the quantum nonlinear Hall effect discussed in this work because they are expected to scale as \(\tau^2 \).

Berry curvature dipole in three dimensions.—Let us explore the constraints imposed by crystal point symmetries on the Berry curvature dipole tensor \(D_{ab} \). A point symmetry is described by an orthogonal matrix \(S \). Because the Berry curvature is a pseudovector, the Berry curvature dipole transforms as a pseudotensor. Hence, crystal symmetries impose constraints of the form

\[D = \text{det}(S) S D S^T. \] (11)

To determine which components of this tensor are nonzero, it is convenient to decompose it into symmetric and antisymmetric parts, \(D^S = (D + D^A)/2 \), which transform independently under symmetry operations. The antisymmetric part of a pseudotensor transforms as a vector, as can be verified from Eq. (11). The components of this vector can be taken to be \(d_a = \epsilon_{abc} D^A_{bc}/2 \). Therefore, for it to be
nonzero the crystal must have a polar axis. From the 32 crystallographic point groups, 10 allow for a polar axis, namely, \(\{C_n, C_{nv}\}\), with \(n = 1, 2, 3, 4, 6\). The vector \(d_n\) will be oriented along such axis. The contribution to the current from this antisymmetric part can be written in vector notation as

\[
\vec{j}^0 = \frac{e^\gamma}{2(1 + i\omega r)} \vec{E} \times (\vec{d} \times \vec{E}),
\]

\[
\vec{j}^{2\omega} = \frac{e^\gamma}{2(1 + i\omega r)} \vec{E} \times (\vec{d} \times \vec{E}).
\]

(12)

Let us now determine which crystals allow for a nonzero symmetric part \(D^+\). We require the crystal to be inversion asymmetric, for otherwise the Berry curvature would be identically zero due to time-reversal symmetry. Any real symmetric matrix can be diagonalized and has a real spectrum. Let us denote its eigenvalues and eigenvectors by \(\delta_i, \vec{e}_i\), respectively: \(D^+ = \sum_{i=1}^3 \delta_i \vec{e}_i \vec{e}_i^T\). All inversion asymmetric crystals without left-handed symmetries allow for \(D^+\) to be nonzero, but might impose constraints on its eigenvectors to lie along the principal symmetry axis and some of its eigenvalues to be degenerate, much in the same way they constrain an ordinary tensor. Such noncentrosymmetric crystal point groups without left-handed symmetries are \(\{O, T, C_1, C_n, D_n\}\), with \(n = 2, 3, 4, 6\).

However, under left-handed symmetries (det \(S = -1\)) the transformations of \(D^+\) differ from those of an ordinary tensor. Equation (11) implies that under a left-handed symmetry operation the spectrum goes to minus itself: \(\{\delta_1, \delta_2, \delta_3\} \rightarrow \{-\delta_1, -\delta_2, -\delta_3\}\). Therefore, for it to remain invariant as a set, it must have the form \(\{\delta_1, \delta_2, 0\} = \{\delta, \delta, 0\}\). In such a case the eigenvectors would transform as \(\vec{e}_1 = \pm \vec{e}_1, \vec{e}_2 = \pm \vec{e}_2, \vec{e}_0 = \pm \vec{e}_2\). Therefore, any crystal with a left-handed symmetry and an \(n\)-fold rotation axis with \(n \geq 3\) will force the tensor \(D^+\) to identically vanish, since such \(n\)-fold rotation would additionally force the eigenvectors contained within the invariant plane to be degenerate. For a mirror symmetry, the null eigenvector has to be parallel to the mirror plane, and the eigenvectors with opposite eigenvalues must be at \(\pi/4\) angles from such plane, so that they are swapped under the mirror operation. Therefore, the only noncentrosymmetric crystals with mirror symmetries that allow for a nonzero \(D^+\) are \(C_{1v}\) and \(C_{2v}\) \([10]\). For \(C_{1v}\) symmetry, \(D^+\) has two independent parameters which can be taken to be the positive eigenvalue and the orientation of the null eigenvector within the mirror plane. For \(C_{2v}\), there is only one independent parameter, which can be taken to be the positive eigenvalue, since the null eigenvector is forced to lie along the rotation axis. Finally, the point group \(S_4\), which contains a single left-handed fourfold rotoreflection symmetry, allows for a nonzero \(D^+\), whose null eigenvector is forced to lie along the rotoreflection axis. \(D^+\) has two independent parameters for \(S_4\), which can be taken to be the positive eigenvalue and the orientation of the corresponding eigenvector within the rotoreflection plane.

Berry curvature dipole in two dimensions.—In two-dimensional crystals the Berry curvature behaves as a pseudoscalar (only the out-of-plane component is nonzero); hence, the Berry curvature dipole behaves as a pseudovector contained in the two-dimensional plane:

\[
D_a = \int k f_0(\partial_a \Omega).
\]

(13)

This vector has units of length. Therefore, symmetry constraints are more severe in two dimensions. In fact, the largest symmetry of a 2D crystal that allows for a nonvanishing Berry curvature dipole is a single mirror line (i.e., a mirror plane that is orthogonal to the 2D crystal), which would force \(D_a\) to be orthogonal to it. In vector notation, the current can be written as

\[
\vec{j}^0 = \frac{e^\gamma}{2(1 + i\omega r)} \vec{z} \times \vec{E} \times (\vec{D} \cdot \vec{E}),
\]

\[
\vec{j}^{2\omega} = \frac{e^\gamma}{2(1 + i\omega r)} \vec{z} \times \vec{E} \times (\vec{D} \cdot \vec{E}).
\]

(14)

The presence of a single mirror symmetry would force the linear conductivity tensor to have its principal axes aligned with the mirror line. Consequently, according to Eq. (14), when the driving electric field is aligned with the direction of the Berry curvature dipole vector \(\vec{D}\), all the current that flows orthogonal to it would arise solely from the Berry curvature dipole term.

Candidate materials.—Berry curvature often concentrates in small regions in momentum space where two or more bands cross or nearly cross. Therefore, Dirac and Weyl materials are excellent candidates to observe the quantum nonlinear Hall effect predicted in this work. Moreover, since this effect requires a Berry curvature dipole, it is advantageous to choose low-symmetry crystals with *tilted* Dirac or Weyl point (see below). We propose three classes of candidate materials: topological crystalline insulators (TCIs), two-dimensional transition metal dichalcogenides, and three-dimensional Weyl semimetals.

The surface of topological crystalline insulators hosts massless Dirac fermions protected by mirror symmetries \([11,12]\). In particular, the [001] surface of TCIs SnTe, Pb\(_{1-x}\)Sn\(_x\)Te, and Pb\(_{1-x}\)Sn\(_x\)Se hosts four massless Dirac fermions \([13]\) protected by two mirror symmetries. Pairs of Dirac cones with spin-momentum locking are located near the \(\vec{X}\) points of the surface Brillouin zone, forming a Kramers pair. At low temperatures the surface undergoes a structural transition into a ferroelectric state and one of the mirror symmetries is spontaneously broken \([14,15]\), while the other remains intact. As a result, two of the surface Dirac cones become massive, while the other two remain massless \([16]\) (see inset in Fig. 1). Since the remaining massless Dirac points have vanishing Berry curvature, it is
sufficient to consider the contribution to the Hall current from the two Dirac points that become massive in the distorted crystal structure. They acquire Berry curvatures of opposite signs, because they are mapped into one another by shear strain along the directions indicated by the blue arrows. Red circles and dashed lines indicate massive Dirac points and the surviving mirror symmetry, respectively.

FIG. 1 (color online). Berry curvature dipole dependence on chemical potential μ. Upper inset: Surface Brillouin zone of TCI SnTe or (Pb,Sn)Se. The blue arrow indicates the direction of the ferroelectric distortion. Lower inset: Brillouin zone of monolayer TMDC. Dirac points are shifted away from K and K' by shear strain along the directions indicated by the blue arrows. Red circles and dashed lines indicate massive Dirac points and the surviving mirror symmetry, respectively.

At zero temperature the Berry curvature dipole, computed from Eq. (13), reduces to an integral over the region $\epsilon_s(k) < \mu$. This integral can be computed by performing an area preserving transformation, $k'_x = \sqrt{v_x/v_y} k_x$, $k'_y = \sqrt{v_y/v_x} k_y$, and by noting that the Fermi surface is an ellipse in the primed coordinates, $k_x'^2/\gamma_x^2 + k_y'^2/\gamma_y^2 = 1$, where $\gamma_x = \gamma/v$, $\gamma_y = \gamma/\sqrt{v^2 - \alpha^2}$, $k_0 = \mu \alpha'/(v^2 - \alpha^2)$, $v = \sqrt{v_xv_y}$, $\gamma = \sqrt{\mu^2 + (v^2 - \alpha^2)k_0^2 - \beta^2}$, $\alpha' = \alpha\sqrt{v_x/v_y}$. The condition $v^2 > \alpha^2$ is equivalent to $\gamma_y > 0$ and is needed for the stability of the tilted Dirac cones. The condition $\mu^2 + (v^2 - \alpha^2)k_0^2 > \beta^2$ states that the chemical potential is outside the gap, so that there is a finite density of massive Dirac fermions.

The surviving mirror symmetry, which takes $k_x \rightarrow -k_y$, dictates that only the y component of the Berry curvature dipole is nonzero, and is found to be

$$D_y = \frac{3\hbar n \beta |\mu|(1 + u^2)}{|\mu^2(1 + u^2)(1 + 2u^2) - u^2 \beta^2|^{3/2}},$$

where $u = \alpha' \sqrt{v^2 - \alpha^2}$ and $n = \int |\epsilon_s(k)| |\mu| d^2k/(2\pi)^2 = \gamma \gamma_y/4\pi$ is the absolute value of the carrier density in each of the massive Dirac cones [18]. Each massive Dirac cone produces an identical contribution to D_y, giving rise to a factor of 2 already included in Eq. (18). This dipole is orthogonal to the ferroelectric displacement direction in our convention. The Berry curvature dipole has the same sign for electrons and holes in this system and vanishes when the chemical potential is in the gap of the massive Dirac fermions. The typical scale of D_y for SnTe TCI is $\hbar \alpha/\beta \sim 3$ nm, where we used a Fermi velocity of $v_x \approx v_y \approx 4 \times 10^5$ m/s [19], $\beta \approx 10$ meV, and $\alpha = 0.1 v_x$ [20]. The behavior of D_y is depicted in Fig. 1.

Another candidate 2D material to observe the quantum nonlinear Hall effect is monolayer transition-metal dichalcogenides (TMDCs). Their large spin-orbit coupling and lack of an inversion center produces substantial local Berry curvatures [21,22]. The C_{3v} symmetry of these crystals would force the Berry curvature dipole to vanish. However, uniaxial strain can reduce this symmetry so that a single mirror operation survives, in which case the effect is allowed. In fact, two copies of the model of Eq. (15), each with a different gap, can describe the states near charge neutrality within a $k \cdot p$ model [21], and when the shear strain is applied along high-symmetry lines (see inset of Fig. 1). $s = \pm$ would label valleys K and K’ in this case. The anisotropic velocity term parametrized by α would be proportional to the strain, much in the same way as in strained graphene [23]. For TMDCs one obtains a scale $\hbar \alpha/\beta \sim 0.2$ Å, using a Fermi velocity of $v \approx 4.5 \times 10^5$ m/s, a gap $\beta \approx 1.5$ eV, and $\alpha = 0.1 v_x$.

Last but not least, the Berry curvature dipole induced nonlinear Hall effect should be present in a large class of three-dimensional noncentrosymmetric crystals. Interesting candidates are the recently discovered Weyl semimetals in the TaAs material class [24–27]. These materials are noncentrosymmetric and have a polar axis, which allows the quantum nonlinear Hall effect described by Eq. (12).
When tilted, a Weyl point generates a singular configuration of Berry curvature, with a finite dipole moment whose magnitude can be easily estimated from band structure calculations. In addition, other polar materials such as BiTeI with a strong Rashba-type spin-orbit coupling [28] may also have large Berry curvature dipole moments. These three-dimensional Weyl and Rashba materials provide promising platforms for the observation of the quantum nonlinear Hall effect.

We wish to thank T. Gulden for valuable discussions and D. Pesin for bringing Ref. [5] to our attention. I. S. is supported by the Pappalardo Fellowship. L. F. is supported by the DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-SC0010526.

[5] After this work was completed and posted, we learned that a result similar to Eq. (8) appeared in, E. Deyo, L. E. Golub, E. L. Ivchenko, and B. Spivak, arXiv:0904.1917v1 (unpublished).
[7] Note that in the pure dc case writing $E_c(t) = E_c$, with $E_c \in \mathbb{R}$, the current is $j_x = 2Im_{\omega=0} \tilde{E}$.
[10] Although C_{2h} has only twofold rotations, the fact that the rotation axis is perpendicular to the mirror plane forces all the elements to vanish.
[18] n is not the full carrier density since there will also be a contribution from the massless Dirac cones.
[20] For an area of 1 mm² and radiation of 1 W, one gets typical currents of 20 nA for parameters of SnTe.