Simulation of Human Motion Data using Short-Horizon Model-Predictive Control

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1111/j.1467-8659.2008.01134.x</td>
</tr>
<tr>
<td>Publisher</td>
<td>Wiley Blackwell</td>
</tr>
<tr>
<td>Version</td>
<td>Author’s final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Tue Mar 12 11:29:53 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/100287</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Simulation of Human Motion Data using Short-Horizon Model-Predictive Control

M. da Silva, Y. Abe, and J. Popović

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Abstract

Many data-driven animation techniques are capable of producing high quality motions of human characters. Few techniques, however, are capable of generating motions that are consistent with physically simulated environments. Physically simulated characters, in contrast, are automatically consistent with the environment, but their motions are often unnatural because they are difficult to control. We present a model-predictive controller that yields natural motions by guiding simulated humans toward real motion data. During simulation, the predictive component of the controller solves a quadratic program to compute the forces for a short window of time into the future. These forces are then applied by a low-gain proportional-derivative component, which makes minor adjustments until the next planning cycle. The controller is fast enough for interactive systems such as games and training simulations. It requires no precomputation and little manual tuning. The controller is resilient to mismatches between the character dynamics and the input motion, which allows it to track motion capture data even where the real dynamics are not known precisely. The same principled formulation can generate natural walks, runs, and jumps in a number of different physically simulated surroundings.

1. Introduction

Many data-driven animation techniques are capable of producing high quality motions of human characters. These approaches extend the usefulness of captured motions by allowing applications to adapt existing motions to meet different needs. Applications can create motions that satisfy new user constraints while maintaining the input motion style [AF003, KG02] or exhibit new styles while preserving content [HP05]. Interactive applications such as games can respond to user input and synthesize new results in real-time.

Few techniques, however, are capable of generating motions that are consistent with physically simulated environments. The implicit assumption made by all kinematic synthesis approaches is that the performance environment is the same as the capture environment. This assumption is invalid when motions are performed in physically simulated environments. In a physical simulation, the character can encounter new or unpredictable circumstances such as being hit by a ball or standing on a shaky platform. Ignoring these interactions leads to physically inconsistent motion.

In contrast, physically simulated character motions are automatically consistent with the environment but are often unnatural because they are difficult to control. Recorded motions provide an intuitive control specification but simulating any such motion remains a difficult problem. Human characters, in particular, have many degrees of freedom (dofs) subject to non-smooth, non-linear dynamics. This makes it hard to find the forces that reproduce a desired motion, particularly in new environments.

We present a controller, McSim (motion capture in simulation), that yields natural motions by guiding simulated humans toward real motion data. McSim can be categorized as an instance of model-predictive control (MPC). In MPC, the controller predicts a control signal that achieves a desired change in system state based on the current system state.
and a model of the system’s dynamics. Our controller uses a predictive component (§4) based on a linearized model of linked rigid body and contact dynamics. The linear dynamics model is used as a constraint in a quadratic program (QP) that solves for the joint and external forces that track the provided input motion for a short window of time into the future.

McSim combines the predictive component with a low gain proportional-derivative (PD) component (§5) as depicted in Figure 1. The predictive component’s control has errors due to high latency and modeling assumptions. The PD component compensates for these errors. The PD component also provides a low-latency response to unexpected perturbations. For certain motions, robustness can be further improved by adapting the input motion according to heuristic feedback rules (§6).

McSim is fast enough for application in interactive systems such as games and training simulations. It can adapt to differences between the character dynamics and the input motion allowing it to track motion capture where the character model can only be estimated. With no precomputation and little manual tuning, McSim is able to produce walking, running, and jumping motions similar to the reference motion while also adapting to new physical surroundings (§7) at interactive rates.

2. Related Work

Most prior online control techniques in the graphics literature have been based on manually designed PD controllers [Rai86, RH91, HWB95, FvdPT01, YLvdP07, SKL07]. These approaches are typically sensitive to gain parameters and not intuitively directed. In contrast, off-line authoring tools based on continuous optimization leverage the benefit of time to search for physical motions that are optimal according to some metric and satisfy user constraints [WK88, Coh92, PW99, FP03, SP05]. The predictive component of McSim is inspired by these off-line approaches but sacrifices global optimality for computation speed by restricting the search to a short amount of time into the future. The predictive component of our controller allows the PD component to use relatively small gain parameters, resulting in more stable simulations and more natural motion [YCP03].

McSim can be guided by an arbitrary input motion. Recently, both off-line and online physically based character animation have used data to produce life-like animations, though the role of data differs for each approach. Since the goal of an off-line approach is to produce a new motion with new content, data is used to restrict the search space of possible solutions [SHP04], to model simplified equations of motion [BJ05, TLP06], and to learn parameters of motion style [LHP05]. In online control, the goal is often to simply track a provided input motion in a dynamically simulated environment [ZH02]. Recent approaches, however, have been limited to special cases of motion such as cyclic motions [YLvdP07] or standing [AdSP07, ZH02]. Our approach can track arbitrary motions exhibiting stylistic variations and transitions such as walking to standing.

Many recent approaches to tracking motion data find approximately optimal control policies using off-line precomputation methods such as feedback error learning or simplex methods [SKL07, SvdP05, vdPL95, YLvdP07]. However, these global search methods are not easily applicable to 3D animation where the number of dofs is large. While McSim could incorporate a precomputed feedforward control signal, it produces plausible motions without precomputation. This enables it to be coupled with kinematic motion synthesis techniques [MK05, MP07] to track newly created 2D or 3D motions at run-time.

Among instantaneous optimization approaches, McSim is closely related to Multiobjective Control [AdSP07]. McSim adds the ability to track motions where the contact state changes regularly as in locomotion. Furthermore, we illustrate how the input motion can be modified to improve tracking performance. There are many previous approaches from robotics that propose some form of optimization over a short time horizon to achieve a motion objective [FOK98, WC06, HMPH04, Wie02], each with key differences in the details. In this paper, we propose an alternative formulation of the tracking problem that is capable of handling arbitrary motions and couple it with robust low-latency feedback mechanisms. Others have argued that this form of control is employed by biological systems [YCP03].

3. Method Overview

McSim’s design is guided by three goals. The output motion should be directed by specifying any input motion. It needs to work at interactive rates without requiring expensive precomputation. Finally, it has to work with existing black-box simulators. We would like our controller to work as a plug-in.
module with any simulator without any modification to the
simulator itself. Achieving these objectives would make the
system suitable for tracking kinematically specified motions
in interactive applications such as games and training simu-
lations. In the following sections, we describe how McSim
achieves these three goals.

At each time step, \(t \), McSim computes a control signal of
the form:

\[
\begin{aligned}
u(t, x, x_r(t)) &= u_f(t, x, x_r(t)) + u_p(t, x, x_r(t)) \quad (1)
\end{aligned}
\]

where \(u \) is the control signal, \(x \) is the current system state
consisting of joint values and velocities, \([q, \dot{q}] \), and \(x_r \) is
the desired state. The total control signal consists of the pre-
dictive component’s signal, \(u_f \), added to the PD compo-
nent’s signal, \(u_p \). A predictive dynamics model computes \(u_f \).
The PD controller computes \(u_p \) which provides low-latency
feedback to deal with unexpected perturbations. Stability is
achieved by tracking the velocity of the root of the character
and modifying the reference motion, \(x_r \) as described in
Section 6.

4. The Predictive Component

The predictive component’s task is to track the reference
motion, \(x_r(t) \). A long-horizon approach to tracking the refer-
ence motion would solve a single optimization for the con-
trol forces exerted over the entire motion [WK88]. For hu-
manship, this form of tracking is a high-dimensional, non-linear, non-convex minimization problem. This makes an
exact solution impractical at interactive rates. Furthermore, in interactive applications, long-horizon optimal plans are
quickly invalidated by changes in the dynamic environment.
Rather than plan optimally for situations that may
never come to pass, we plan over a small interval into the
future using a linearized dynamics model and re-plan at reg-
ular intervals, incorporating changes in system state. We call
this form of the problem, short-horizon tracking.

4.1. Short-Horizon Tracking

In a physical simulation, a character’s motion is determined
by integrating a dynamical system forward in time from
some initial configuration,

\[
\begin{aligned}
x(T) = x(0) + \int_0^T \dot{x}(t) dt. \quad (2)
\end{aligned}
\]

For an active character modeled as a system of linked rigid
bodies with actuators between each joint, the equations of
motion depend on the current state, \(x(t) \), the control signal,
\(u(t) \), and the external forces, \(u_e(t) \). The precise equations can
be derived from classical mechanics [FO00] but are summa-
rized here as

\[
\begin{aligned}
\dot{x}(t) &= f(x(t), u(t) + u_e(t)). \quad (3)
\end{aligned}
\]

A motion that perfectly tracks the reference satisfies
\(\dot{q}(t) = \dot{q}_r(t) \) for all \(t \), where \(\dot{q}_r \) is the acceleration of
the reference motion. The predictive component computes a \(u_f \)
that tries to reproduce the reference acceleration over a window
of size \(h \). In practice, it is usually not possible to achieve
the reference acceleration, \(\dot{q}_r \), exactly due to dynamics con-
straints of the character and environmental disturbances. As
a result, the simulated motion will drift from the reference
motion. To correct this drift, feedback terms are added to the
reference acceleration to form the desired acceleration, \(\dot{q}_d \),
as described in the next section. Once the desired acceleration
is known, a constrained optimization is solved for the
joint torques and external forces that achieve it.

4.2. The Desired Acceleration

The desired acceleration consists of the reference acceler-
ation and a correction term. It is computed separately for each
joint.

\[
\begin{aligned}
\dot{q}_d &= \ddot{q}_r + k_{os} d(q_r, q) + k_{oq}(q_r - \dot{q}). \quad (4)
\end{aligned}
\]

The correction terms act as a damped feedback acceler-
ation on any errors that occur. The function \(d \) compares the
current joint configuration, \(q \), to the reference configuration,
\(q_r \), and computes an angular acceleration that will move \(q \)
closer to \(q_r \). The scale of this acceleration is determined by the
gain parameter, \(k_{os} \). For rotational joints with one de-
gree of freedom (dof), known as pin joints, \(d(a, b) = a - b \).
Three dof joints, known as ball joints, are represented using
quaternions. In this case, \(d(a, b) = vec_i(a^{-1} \cdot b) \) where \(vec_i \)
represents quaternion multiplication and \(vec_i \) maps the quater-
nion to the equivalent axis-angle rotation’s \(i \)’th component.
The last term in Equation 4 corrects for errors with respect to
the reference velocity \(\dot{q}_r \) obtained from the motion capture
data.

With the exception of the root translation, all desired ac-
celerations are computed using the same values of \(k_{os} \) and
\(k_{oq} \). If \(k_{os} = c \), then \(k_{oq} = 2\sqrt{c} \). Errors in the current position
of the root are ignored when computing the desired acceler-
ation of the root. Thus, for the root translation, \(k_{os} = 0 \). This
prevents the controller from trying to correct for errors that
are unavoidable due to the environment such as the charac-
ter walking down hill. The velocity gain is not zero, how-
ever. This feedback uses the same gain as the other joints,
\(k_{oq} = 2\sqrt{c} \). The controller is fairly insensitive to the partic-
ular value of \(c \) chosen as shown in section 7.

4.3. Dynamics Constraints

Computing the control input \(u \) needed to achieve the desired
acceleration just described would be easy if we could simply
invert Equation 3. Unfortunately, humans and animals have
more degrees of freedom than forces to control them. Simple
inverse dynamics algorithms such as those used for robotic
arms rely on being rooted to the environment. Humans, how-
ever, are not rooted to the ground. They can use their feet
to push, but not pull, on the ground. They must manipulate these unilateral contact constraints while respecting frictional limits to effect their overall motion [Wie02, AdSP07]. These contact constraints are a key component of the dynamic model used by the predictive component.

![Figure 2: A friction cone in 2D. Legal contact forces lie within the cone which can be represented using a linear basis. Non-negative combinations of the basis vectors yield forces in the cone.](image)

Contact forces are computed using a polygonal approximation to Coulomb’s model of friction [FP03]. The model is depicted in 2D in Figure 2. Legal contact forces lie within a friction cone at each corner of the foot in contact with the ground. The cone is oriented normal to the contacting surface with a swept angle determined by the coefficient of friction. In 3D, we use a polygonal approximation (4 facets) to this cone which can be described with a linear basis, \(V \). Contact forces are equal to \(V\lambda \) with \(\lambda \geq 0 \). The non-negative bound on \(\lambda \) insures that the ground reaction force resides within the approximation to the friction cone and prevents contacting bodies from pulling on each other. The \(i \)th contact force induces generalized torques on the character which are calculated as \(J_i^T V\lambda_i \) where \(J \) is the gradient of the contact point with respect to the joint configuration of the character. The total contact force on the character, then, is \(u_c = \sum_i J_i^T V\lambda_i \).

For this static contact model to hold, the contact forces must act only on contact points with zero acceleration [Bar89]. This is known as the no-slip condition:

\[
J_i \ddot{q} + J_i \dot{q} = 0. \tag{5}
\]

In addition to constraints on possible contact forces, achievable accelerations are constrained by the dynamics of the character. Since the predictive component plans over a short-horizon, the dynamics of the character are described by a linear relationship between applied forces and resulting accelerations:

\[
\ddot{q}(t) = f(q(t), \dot{q}(t), 0) + W(u + u_c) \tag{6}
\]

where \(W \) is the gradient of \(f \) with respect to the control input. Note that the internal torques, \(u \), are limited by bounds on the strength of the character’s actuators, \(u_f \in U \), further restricting possible accelerations.

4.4. Quadratic Programming Optimization

Given all of these constraints, we can now formulate an optimization problem that solves for the joint and external forces, \(u_f \) and \(J_i^T V\lambda_i \), that best achieve the desired acceleration, \(\ddot{q}_d \):

\[
\begin{align*}
\min_{u_f, \lambda_i} & \quad \frac{1}{2} \| \ddot{q} - \ddot{q}_d \|^2 \\
\text{subject to} & \quad \lambda_i \geq 0 \\
& \quad u_f \in U \\
& \quad \ddot{q} = f(q, \dot{q}, 0) + W(u + \sum_i J_i^T V\lambda_i) \tag{7}\end{align*}
\]

\[
J_i \ddot{q} + J_i \dot{q} = 0. \tag{7e}
\]

The predicted acceleration of the character is \(\ddot{q} \). The objective penalizes accelerations different than the desired acceleration, \(\ddot{q}_d \), which was chosen to track the reference motion. This minimization problem can be solved efficiently: it features a quadratic objective with a positive-semidefinite Hessian, and the constraints are linear. This yields a convex quadratic programming (QP) problem. The QP is solved at a much slower rate than the simulation. At time steps where it is not solved, the previously calculated forces are used.

5. Proportional-Derivative Component

Solving the QP in the predictive component is fast but not immediate. The drawback of this latency is that the predictive component cannot adapt to disturbances in between updates to its control signal. We resolve this problem with a PD control that adjusts the QP solution at each simulation step. The PD control guides the character through contact transitions and provides immediate responses to disturbances.

McSim’s PD component computes \(u_b \) in Equation 1 at each step of the simulation. It is implemented using a critically-damped proportional-derivative (PD) controller [RH91]. The form of this control varies according to the particular joint. Since the root joint of the character is unactuated, no feedback forces are computed for the root dof’s. Pin joints are computed using a standard critically damped feedback law

\[
u_b = k_s(q_r - q) - 2\sqrt{k_s}\dot{q}. \tag{8}\]

To compute the feedback forces of a ball joint, we first compute the composite rotational inertia of all of its child links in world coordinates:

\[
I_{c,j} = \sum_{l \in c(j) \cup j} R_l I_l R_l^T. \tag{9}\]
The resulting feedback force is then computed as
\[
 u_b = k_sI_c d(q_r, q) + 2\sqrt{k_sI_c}(q_r - \dot{q}).
\]
(10)

Note that the term \(\sqrt{k_sI_c}\) means taking the square root of each element of the matrix \(k_sI_c\). Multiplying by the world-space inertia matrix insures that the feedback force is scaled by the appropriate amount relative to the actual current distribution of mass supported by the joint. The resulting force, \(u_b\), is added to the current predictive force \(u_f\) to give the total force at each time step.

6. Maintaining Balance

McSim maintains balance by tracking the input motion with forces that are consistent with the current contact environment. Other works employ a similar approach by using formulations specific to static contact [ZH02] or infinite friction and planar contacts [KKI02, HMPH04, VB04]. In contrast, McSim uses a model of contact dynamics that can account for more general geometric and frictional properties of the contacting surfaces [Wie02, AdSP07].

In certain cases, heuristic methods can adapt the input motion directly to improve tracking robustness. For example, one could track a parameterized family of motions rather than a single motion [WC06] or adapt the center of mass motion through a feedback [AdSP07]. For some of the 2D motions presented in the results section, we employed a feedback scheme similar to the heuristic used in the SIMBICON system [YLvdP07]:
\[
 \theta_d = \theta_{d0} + c_d d + c_v v
\]
(11)

where \(\theta_d\) is the desired angle of the swing hip, \(\theta_{d0}\) is the value of the swing hip in the reference motion, \(d\) is the horizontal distance between the root link and the support foot, and \(v\) is the horizontal velocity of the root link. Contrary, to SIMBICON’s approach, we do not change the gains, \(c_d\) and \(c_v\), with changes in contact state. They are fixed for a particular motion.

McSim is largely insensitive to the particular choice of the gains. Normally, McSim tracks the input motion even when the gains are set to zero. However, adding this form of balance feedback improved the robustness of a character walking on a moving platform and allowed the controller to track a run cycle indefinitely. A drawback to using this particular form of balance feedback, however, is that it is specific to walking and running motions. Similar methods of adapting the input motion have been applied to other motions [Woo00].

7. Results

McSim produces life-like character motion similar to a provided input motion. In the following section we highlight results that demonstrate McSim’s ability to adapt motion capture data to new physical environments and track a variety of input motions. We also explore the sensitivity of the approach to various modeling errors and discuss the quality of the results. Finally, we provide implementation details.

7.1. New Environments

An exciting application of McSim is adapting motion data to new physical environments. For example, a motion recorded on flat ground can be adapted to walk up or down an inclined ground plane. In our experiments, successful walks were created for uphill slopes as large as five degrees and downhill slopes as large as 10 degrees. Simple kinematic playback of the motion would walk through the ground or into the air [dSAP08].

In a physical simulation, the environment can change dynamically and a character must react to maintain plausibility. Our controller allows motion data to adapt to its environment. We present several results where the character is perturbed by flying balls or obstructed by blocks. The ground too can evolve dynamically as evidenced by simulations of the character walking over a moving platform and a seesaw [dSAP08].

7.2. Tracking

McSim is capable of tracking a wide range of motions in 2D and 3D including walking, running, and jumping motions [dSAP08]. These motions exhibit variations and transitions between modes such as from standing to walking and walking to standing.

A key feature of McSim is that there are few parameters that require tuning. To generate the results, two parameters were tuned manually: the optimal feedback gain used in Equation 4 and a scale factor on the intrinsic joint stiffness parameters used in Equations 8 and 9. In most cases, it was not difficult to find a satisfactory setting of these parameters as a large range of values led to satisfactory results as explained in Table 1. Even across different types of motion, identical parameter values lead to good results.

Though McSim does not satisfy any optimality criterion, it achieves good tracking results in practice. In the absence of large disturbances to the physical system or large errors in the physical character model, McSim will succeed in tracking the input motion. The plots in Figure 3 depict the squared tracking error (squared Euclidean distance between the actual state vector and the desired state vector) over time for selected motions. The plots illustrate several interesting features of the tracking system. First, the beginning of the walk motion is a period of standing. The system has little trouble tracking this portion of the motion. More energetic motions lead to more error. The spikes in the error curves coincide with changes in contact state suggesting that the predictive model could be improved by accounting for mismatches in the current contact state and the contact state in the reference motion.
Table 1: This table lists the relevant parameters used to generate selected results. \(k \) is a scale factor that multiplies the intrinsic joint stiffness parameters of the character listed in Tables 2 and 3 which are then used in the PD feedback component of the system. \(k_{os} \) is a gain used to calculate a modification to the acceleration from the input motion as in Equation 4. These two parameters were tuned manually to achieve a desired tracking result but reasonable results are achieved for a range of settings. For most 2D motions, values of \(k \) in the range between 0.005 and 0.5 worked. The setting of \(k_{os} \) is also flexible. Values in the range of 300 to 2000 typically work for this parameter. In many cases, the same settings achieved good results for many different motions. Starred motions were simulated using stiff springs at contacts. Despite using a different contact model, McSim tracks these motions well.

<table>
<thead>
<tr>
<th>Motion</th>
<th>(k)</th>
<th>(k_{os})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D Punchy</td>
<td>0.02</td>
<td>1000</td>
</tr>
<tr>
<td>Downhill</td>
<td>0.02</td>
<td>300</td>
</tr>
<tr>
<td>Walk Wave</td>
<td>0.02</td>
<td>1000</td>
</tr>
<tr>
<td>Sneaky*</td>
<td>0.005</td>
<td>500</td>
</tr>
<tr>
<td>2D Jump</td>
<td>0.05</td>
<td>1000</td>
</tr>
<tr>
<td>Run</td>
<td>0.2</td>
<td>600</td>
</tr>
<tr>
<td>Backwards</td>
<td>0.05</td>
<td>1000</td>
</tr>
<tr>
<td>Soldier</td>
<td>0.01</td>
<td>600</td>
</tr>
<tr>
<td>March</td>
<td>0.05</td>
<td>1000</td>
</tr>
<tr>
<td>Limp</td>
<td>0.08</td>
<td>1000</td>
</tr>
</tbody>
</table>

7.3. Modeling Errors

The tracking quality of McSim is adversely effected by physical mismatches between the character model and the capture subject. To explore the effect of modeling errors we introduce various modeling changes and measure the change in tracking performance.

One potential source of error in tracking motion capture data is an incorrect physical model of the subject. The mass distribution and inertial properties are often based on statistical models that are often quite different than the actual properties of the recorded subject. This mismatch can make an input motion physically infeasible for the character. To illustrate the sensitivity to errors in mass distribution, we plot the squared error for different versions of the 2D model for the walking motion in Figure 4. The mass of the character was redistributed to create three new versions of the original. One version of the character has a left leg that is twice as heavy as the right leg. In the next version, the upper body’s mass is doubled while the lower body mass is cut in half. Finally, we double the mass of both legs. For walking motions, McSim is more sensitive to errors in the mass properties of the legs.

Contact geometry was modeled using four small spheres placed at the corners of each foot. The controller is somewhat insensitive to the simulator’s contact dynamics. To illustrate this, we compared the performance of the controller on a walking motion with varying coefficients of friction in Figure 3. Tracking performance was not greatly effected. Contact dynamics were approximated using a friction cone model with a coefficient of friction ranging from 0.75 to 2.0 or stiff springs as in [SKL07].

The feet present another difficulty when tracking motion capture data. Our motion capture data for the ankle is fairly rough. To overcome this, we modeled the foot using a friction cone model with a varying coefficient of friction. We also modeled contact using a friction cone model with a coefficient of friction ranging from 0.75 to 2.0 or stiff springs as in [SKL07].

Figure 3: Shown are plots of squared error over time for four selected motions. The plots illustrate several interesting features of the tracking system. First, the beginning of the walk motion is a period of standing. The system has little trouble tracking this portion of the motion. More energetic motions lead to more error. The spikes in the error curves coincide with changes in contact state suggesting that the predictive model could be improved by accounting for mismatches in the current contact state and the contact state in the reference motion.

Figure 4: Shown are plots of squared error over time for four versions of the 2D model tracking the walking motion. The modifications are described in the legend. McSim is more sensitive to errors in the mass properties of the legs.
Figure 5: In these plots, the squared error is shown for a walking motion where the coefficient of friction in the predictive component is varied from 0.5 to 1.5. The simulator’s coefficient of friction was fixed at 1. For walking motions, the error is not greatly affected by the coefficient of friction used in the model. When the predictive model’s coefficient of friction exceeds the actual coefficient of friction, performance is worse, but only slightly.

7.4. Motion Quality

The results of McSim’s tracking often look robotic and abrupt. For example, the 3D marching motion makes hard contacts with the ground that are not present in the reference motion. The 2D walk uphill sways a bit unnaturally as well. There are a couple of factors that affect the quality of the results. The first is that the short-horizon approach to tracking is a greedy approach. It applies large torques to try and immediately cancel any errors. These large forces can lead to unnatural accelerations and motion. The other factor affecting quality is the fact that gain parameters are manually set by hand. This was more of an issue for the 3D examples which were more sensitive to the gain parameter settings.

7.5. Experimental Setup

The motion data for this work came from two sources. The 2D examples were downloaded from http://mrl.snu.ac.kr/research/ProjectSimulBiped/SimulBiped.html.

This data was converted to 2D from motion capture data as described in [SKL07]. The 3D data was captured and processed using a standard motion capture system.

A prerequisite of simulating character motion is a physical model of the inertial and stiffness properties of the character’s limbs and joints. A good model is important as significant errors make the input motion physically infeasible for the model. For the 2D examples, the physical model
Figure 7: The models. A free joint has six degrees of freedom and is represented by a position and a quaternion. A pin joint has one degree of freedom and is represented by an angle of rotation. The center of mass of each link is located at the center of the link. Inertial and joint stiffness properties are listed in Table 2 and 3.

Table 3: This table lists the inertial properties of each link in the 3D model and the stiffness of the associated joint. Again, there is no stiffness for the un actuated root joint.

<table>
<thead>
<tr>
<th>Link</th>
<th>(k_s)</th>
<th>Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>trunk</td>
<td>N/A</td>
<td>12.92</td>
</tr>
<tr>
<td>thigh</td>
<td>4000</td>
<td>9.0853</td>
</tr>
<tr>
<td>shin</td>
<td>4000</td>
<td>3.944</td>
</tr>
<tr>
<td>foot</td>
<td>1000</td>
<td>1</td>
</tr>
<tr>
<td>toes</td>
<td>4000</td>
<td>0.3</td>
</tr>
<tr>
<td>thorax</td>
<td>3000</td>
<td>17.155</td>
</tr>
<tr>
<td>clavicle</td>
<td>4000</td>
<td>2.535</td>
</tr>
<tr>
<td>upper arm</td>
<td>4000</td>
<td>1.435</td>
</tr>
<tr>
<td>lower arm</td>
<td>3000</td>
<td>0.575</td>
</tr>
<tr>
<td>hand</td>
<td>3000</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 4: Timing results for the QP solver as a function of the number of variables in the QP. The number of variables is a function of the number of degrees of freedom in the character and the current contact state. Note that, for ease of implementation, we used dummy variables for the acceleration of each degree of freedom. This is not strictly necessary and would result in a much smaller QP problem.

<table>
<thead>
<tr>
<th>Num. Vars.</th>
<th>QP Solve Time (secs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>0.0013</td>
</tr>
<tr>
<td>44</td>
<td>0.0015</td>
</tr>
<tr>
<td>52</td>
<td>0.0023</td>
</tr>
<tr>
<td>68</td>
<td>0.003</td>
</tr>
<tr>
<td>150</td>
<td>0.007</td>
</tr>
<tr>
<td>154</td>
<td>0.0075</td>
</tr>
<tr>
<td>158</td>
<td>0.0097</td>
</tr>
</tbody>
</table>

The simulations were executed in DANCE [SFNTH05] using the Open Dynamics Engine (ODE) as the simulator. The step size was 1 ms for the 2D examples and 0.1 ms for the 3D examples. We use a smaller step size for 3D examples as ODE was unstable with larger step sizes. A simulator using an implicit or semi-implicit integration scheme could presumably use a larger step size.

The controller implementation sets up the QP problem described in section 4 using the current contact state from the simulation. It uses our C++ implementation of recursive dynamics equations [FO00] to compute various dynamical quantities needed for the optimization such as the inertial matrix of the system and gravitational and centrifugal forces on the system. The QP is solved using SQOPT [GMS97]. Timings for the QP solver on a Pentium 4 2.8 Ghz processor are presented in Table 4. The code for the PD component took roughly 0.4 ms on the 3D character and 0.05 ms on the 2D character.

8. Conclusions

Motion data is an intuitive way to direct the actions of a physically simulated character. Determining the forces that track the motion faithfully while respecting physical
and environmental constraints is a difficult problem. McSim finds these forces at interactive rates making it suitable for the control of characters in interactive applications such as games.

McSim sacrifices optimality for computational performance. This sacrifice impacts the quality of the resulting motions. Quality was also impacted by the manually set parameters of the controller: the gain on desired acceleration and the PD gain. For some 3D motions, it was more difficult to find parameters that produced nice results. Also, there were certain motions that we could not track well such as turning motions. An interesting area of future work would be to apply optimization techniques that automatically tune the manually set parameters. In addition to reducing dimensionality, parameterizing control with our approach may help smooth the energy landscape, making it easier to find solutions.

Tracking a single input motion is not a good strategy for robust and stable control of a physically simulated character. In this paper, we experimented with a simple heuristic that adjusts the desired angle of the swing hip to help stabilize walking and running. In the future, we would like to incorporate long range planning to improve the quality of the output motion and improve the stability of the controller. This would require a good understanding of which aspects of the motion are crucial for stability versus those aspects that can vary.

References

[PW99] POPOVIC Z., WITKIN A. P.: Physically based

