Production of leading charged particles and leading charged-particle jets at small transverse momenta in pp collisions at $s = 8$ TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Production of leading charged particles and leading-charged-particle jets at small transverse momenta in \(pp \) collisions at \(\sqrt{s} = 8 \) TeV

V. Khachatryan et al.*
(CMS Collaboration)
(Received 30 June 2015; published 1 December 2015)

The per-event yield of the highest transverse momentum charged particle and charged-particle jet, integrated above a given \(p_T^\text{min} \) threshold starting at \(p_T^\text{min} = 0.8 \) and 1 GeV, respectively, is studied in \(pp \) collisions at \(\sqrt{s} = 8 \) TeV. The particles and the jets are measured in the pseudorapidity ranges \(|\eta| < 2.4 \) and 1.9, respectively. The data are sensitive to the momentum scale at which parton densities saturate in the proton, to multiple partonic interactions, and to other key aspects of the transition between the soft and hard QCD regimes in hadronic collisions.

DOI: 10.1103/PhysRevD.92.112001

PACS numbers: 13.60.Hb

I. INTRODUCTION

The production of jets with large transverse momenta \(p_T \gg \Lambda_{\text{QCD}} \approx 0.2 \) GeV in high-energy proton-proton (\(pp \)) collisions originates from the scattering of partons, a process described by perturbative quantum chromodynamics (pQCD), through the convolution of the parton-parton cross section with the density of partons inside the protons. Jet production in \(pp \) collisions at the LHC, at transverse momenta \(p_T > 20 \) GeV and in the pseudorapidity range \(|\eta| < 3 \), is well described by next-to-leading-order pQCD calculations [1–3]. However, most of the final-state hadrons produced in \(pp \) collisions arise from the hadronization of quarks and gluons scattered through “seminhard” interactions with exchanged momenta of \(O(1–3 \) GeV). At such low values of \(p_T \), the theoretical partonic cross section, \(d\sigma/dp_T^2 \propto \alpha_s^2(p_T)/p_T^3 \), where \(\alpha_s \) is the strong coupling, becomes very large, and the integrated cross section \(\sigma(p_T^\text{min}) = \int_{p_T^\text{min}}^{p_T} d\sigma/dp_T^2 dp_T^2 \) exceeds the total inelastic \(pp \) cross section, \(\sigma_{\text{inel}} \). At \(\sqrt{s} = 8 \) TeV, where \(\sigma_{\text{inel}} \approx 70 \) mb [4], this occurs at \(p_T^\text{min} \) values of \(\mathcal{O}(3 \) GeV), much larger than the QCD scale, \(\Lambda_{\text{QCD}} \), at which the strong coupling diverges [5,6].

Model calculations of hadronic collisions often regulate such an infrared divergence through an effective parameter connected to the confinement scale of hadrons [7], such that the leading particle or leading jet production cross sections do not exceed the value of \(\sigma_{\text{inel}} \). Contrary to the inclusive particle or jet production cross sections, the leading particle or leading jet production cross sections must indeed approach the total inelastic cross section because only one particle or one jet, the one with highest \(p_T \) in this case, is considered per event. In addition, at small \(p_T \), the parton densities are probed in a region where parton recombination, i.e. saturation (see e.g. Ref. [8]), may occur.

Reference [9] proposes that the jet cross section integrated over \(p_T > p_T^\text{min} \) can be used as a probe of the transition from the perturbative \((p_T^\text{min} \gg \Lambda_{\text{QCD}}) \) to the nonperturbative region \((p_T^\text{min} \to \Lambda_{\text{QCD}}) \). According to Ref. [9], this transition should also be visible for cross sections defined in restricted ranges of pseudorapidity.

The results presented in this paper are based on measurements of single charged particles and jets reconstructed from charged particles alone. The advantage of jets is that they include more particles originating from the outgoing partons, while single charged hadrons carry only a fraction of the parent parton momentum. On the other hand, jets are sensitive to the underlying event (UE) activity, consisting of particles originating from multiple partonic interactions (MPIs) and initial- and final-state radiation, while single leading tracks are not. The measurements based on leading particles and leading jets are therefore complementary. Throughout the text, the term “track jets” refers to detector-level jets, reconstructed from charged-particle tracks observed in the detector, while “charged-particle jets” or just “jets” denotes corrected, stable-particle level jets, consisting of stable charged particles from the final state.

In this paper, the yields, \(r(p_T^\text{min}) \), for \(pp \) collisions with a leading charged particle or a leading jet are measured as a function of a minimum transverse momentum, \(p_T^\text{min} \):

\[
r(p_T^\text{min}) = \frac{1}{N_{\text{evt}}} \int p_T^\text{min} dp_T^{\text{lead}} \left(\frac{dN}{dp_T^{\text{lead}}} \right),
\]

where \(N_{\text{evt}} \) is the number of selected events with a leading charged particle with \(p_T > 0.4 \) GeV and \(|\eta| < 2.4 \) and \(N \) is the number of events with a leading charged particle or a leading jet with transverse momentum \(p_T^{\text{lead}} \) within \(|\eta| < 2.4 \) or 1.9, respectively.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
II. PHENOMENOLOGICAL MODELS

The measured distributions are compared to the predictions of different hadronic interaction models of which the tunable parameters (mostly connected to nonperturbative and semihard QCD phenomena) are obtained from comparisons to LHC data such as those on UE activity, inclusive multiparticle production, and diffraction.

The PYTHIA 6 [10] and 8 [11] event generators tame the low-p_T behavior of the leading-order pQCD $2 \to 2$ cross sections with a phenomenological factor [5,6]

$$a_s^2(p_T^{2,0} + p_T^d)/a_s^2(p_T^d)^2,$$

where $p_T^{2,0}$ is a (tunable) infrared regulator that runs with center-of-mass energy. The soft parton densities [25] are used, featuring different choices of the p_T cutoff, proton transverse profile, and/or parton distribution functions.

The HERWIG++ [16] Monte Carlo (MC) includes a hard (pQCD $2 \to 2$ interactions) [17] and a soft (nonperturbative) component for multiple interactions [18]. The soft part is parametrized phenomenologically as $d\sigma/dp_T^2 = A e^{-\beta p_T^2}$. The transition scale between the hard and the soft regions is set by the parameter $p_T^{2,0}$, obtained from fits to MPI and UE data as well as to the effective cross section for double-parton scatterings. The parameters A and β are fixed by the requirements that the transverse momentum distribution be continuous at the matching scale $p_T^{2,0}$ and that the model reproduces the measured total cross section. Tune UE-EE-5C [19] is used.

The other two models, QGSJET-II [20] and EPOS [21,22], are based on the Regge–Gribov effective field theory [23], which allows for a consistent treatment of soft and hard scattering processes in terms of the same degrees of freedom (reggeons and pomeron), based on unitarity cuts of the corresponding elastic scattering diagrams. Perturbative parton-parton processes are obtained via “cut (hard) pomeron” diagrams, and multisattering phenomena (saturation, MPI) are implemented through various procedures [24]. The two models differ in their approximations for the collision configurations (with exact energy sharing imposed in the case of EPOS) and the treatment of diffractive and perturbative contributions (the effective soft-hard transition occurs at $p_T^{2,0} \sim 1.6$ GeV for QGSJET-II and at $p_T^{2,0} \sim 2$ GeV for EPOS). Finally, in contrast to other MCs, EPOS includes also collective expansion effects in the final state that boost the final p_T distribution of the produced hadrons. It is worth highlighting that, for all MC models, the (center-of-mass energy dependent) $p_T^{2,0}$ cutoff plays a very similar role to the “saturation scale” (Q_{sat}), which controls the onset of gluon fusion effects in the parton densities [25].

III. EXPERIMENTAL ANALYSIS

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. A silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator sampling hadron calorimeter are located within the volume of the solenoid.

The inner silicon tracker measures charged-particle trajectories (“tracks” in the following) within the pseudorapidity range $|\eta| < 2.5$. It provides an impact parameter resolution of about 100 μm and a p_T resolution of about 0.7% for 1 GeV tracks at $\eta = 0$ [26]. A more detailed description of the CMS detector, together with definitions of the coordinate system and kinematic variables, can be found in Ref. [27].

The data analyzed in this study were collected during a dedicated proton-proton run with an integrated luminosity of 45 μb$^{-1}$ at a center-of-mass energy of $\sqrt{s} = 8$ TeV. This run has a low instantaneous luminosity and a low probability (~2%) of multiple pp interactions occurring in the same bunch crossing (pileup). Pileup events are rejected by requiring exactly one vertex, following the method described in Ref. [28].

Minimum bias events were selected online with the TOTEM T2 telescopes [29] that are placed symmetrically at about 14 m on both sides from the interaction point (IP). Single tracks are reconstructed in these telescopes with almost 100% efficiency for $p_T > 20$ MeV/c, but because of multiple scattering and the effect of the magnetic field, tracks can be identified as coming from the IP with an efficiency that increases as a function of p_T and is greater than 80% for $p_T > 40$ MeV/c [30]. The minimum bias trigger, defined by the requirement of the presence of at least one track candidate in either of the T2 detectors [31], has an efficiency close to 100% [28] for events where a charged particle is produced within the T2 acceptance. According to the PYTHIA 8 and QGSJET-II-04 [20] generators, about 91%–96% of the total inelastic cross section at $\sqrt{s} = 8$ TeV is seen by T2 [4], with the uncertainty coming mainly from low mass diffractive events. The present analysis follows the procedure described in Ref. [28], where more details are given on the trigger, data selection, and correction procedures.

Corrections for the contribution of background events triggered by T2 but without a charged primary particle in the T2 acceptance are estimated with simulated events from PYTHIA 8 and EPOS. These models were found to enclose the measured pseudorapidity distributions of charged particles in the forward region [28]. The average corrections for the two models vary from 4% and 1% at $p_T^{min} \approx 1$ GeV to 7% and 5% at $p_T^{min} \approx 45$ GeV, for the track and track-jet analysis, respectively. The deviation of PYTHIA 8 and EPOS from the average correction is taken as an estimate of the systematic uncertainty related to the T2 trigger efficiency; it is less than 0.7% for the leading track measurement and varies between 0.1% and 1.0% for the leading track-jet measurement [28].

Events are selected offline by requiring the presence of a leading track in the region $|\eta| < 2.4$ with $p_T > 0.4$ GeV.
These events are used to normalize the integrated distributions in both the leading track and the track-jet measurements. Track-jets are reconstructed offline from tracks with \(p_T > 0.1 \) GeV and \(|\eta| < 2.4 \), clustered by using the anti-\(k_T \) algorithm [32–34] with a distance parameter of 0.5. The track-jet momentum is determined from the sum of all track momenta in the track jet. The pseudorapidity restriction \(|\eta^{jet}| < 1.9 \) assures that the track jet is contained within the tracker acceptance.

Detailed MC simulations of the CMS and T2 detectors are based on GEANT4 [35]. Simulated events are processed and reconstructed in the same manner as collision data. For the correction of detector effects, as well as for comparison with models, both the PYTHIA 6 [10] (version 6.426) event generator with tune Z2* [36] and the PYTHIA 8 (version 8.153) generator with tune 4C are used. The final correction is obtained by averaging those from the two generators.

The data are corrected to the stable-particle level, which is defined to include primary charged particles with lifetimes of \(c\tau > 1 \) cm, either directly produced in the \(pp \) collisions or from decays of particles with shorter lifetimes. According to this definition, \(K_0^0 \) and \(\Lambda \) hadrons are considered stable. Generated events are selected at the stable-particle level if at least one charged particle with \(p_T > 40 \) MeV is present within the range \(5.3 < |\eta| < 6.5 \) and at least one charged particle with \(p_T > 0.4 \) GeV is found within \(|\eta| < 2.4 \). In each event, the highest-\(p_T \) charged particle within \(|\eta| < 2.4 \) and \(p_T > 0.8 \) GeV is selected as the leading particle. Charged particles are clustered into jets by using the anti-\(k_T \) algorithm with a distance parameter of 0.5 with no restriction on \(p_T \) or \(\eta \). The leading charged-particle jet is then defined as the charged-particle jet with the highest \(p_T \) above 1 GeV and \(|\eta^{jet}| < 1.9 \).

The average systematic uncertainty in the track reconstruction efficiency is taken to be 3.9% [37]. Its effect is studied by randomly rejecting 3.9% of the tracks and then repeating the analysis. In the jet analysis, for tracks with low \(p_T \), the rejection probability is taken as 15% for \(p_T < 1 \) GeV. However, since the measurement is integrated over \(p_T \), it is nearly insensitive to even such large values of the rejection probability. The resulting uncertainty varies between 0.4% and 3.7% for the leading charged-particle analysis and between 2% and 12% for the leading jet analysis. The larger uncertainties correspond to higher \(p_T^{min} \).

The \(p_T \) distribution of leading track jets is unfolded to the stable-particle level by applying the iterative procedure [38] implemented in ROO\textsc{Unfold} [39] in order to correct for the jet reconstruction efficiency and for migrations in jet \(p_T \). Thanks to the good \(p_T \) resolution of the reconstructed tracks, a simple correction for the track-finding efficiency is found to be sufficient for obtaining the \(p_T \) distribution of leading charged particles. The PYTHIA 6 and PYTHIA 8 MC models are used to generate the response matrices and efficiency corrections, and the average correction from the two generators is used to obtain the \(p_T \) distributions at the stable-particle level. The corrections vary between 5% and 10% at \(p_T \approx 1 \) GeV, to 10% and 40% at \(p_T \approx 45 \) GeV, for the charged particle and the jet measurements, respectively. The deviation from the average is taken as an estimate of the systematic uncertainty related to the correction procedure. This uncertainty varies from 0.6% to 3% for the leading charged-particle analysis, and from 2% to 10% for the leading jet analysis, depending on \(p_T^{min} \).

The systematic uncertainties are summarized in Table I.

<table>
<thead>
<tr>
<th>Source</th>
<th>Leading charged particle</th>
<th>Leading jet</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2 trigger efficiency</td>
<td>0.7</td>
<td>0.1–1.0</td>
</tr>
<tr>
<td>Tracking efficiency</td>
<td>0.4–3.7</td>
<td>2–12</td>
</tr>
<tr>
<td>Correction procedure</td>
<td>0.6–3.0</td>
<td>2.0–10</td>
</tr>
<tr>
<td>Total</td>
<td>0.7–4.6</td>
<td>2.5–16</td>
</tr>
</tbody>
</table>

The per-event yields, defined in Eq. (1), are obtained experimentally as

\[
r(p_T^{min}) = \frac{1}{N_{evt}} \sum_{p_T^{lead} > p_T^{min}} \Delta p_T^{lead} \left(\frac{\Delta N}{\Delta p_T^{lead}} \right),
\]

where \(N_{evt} \) is the number of events with a leading charged particle within \(|\eta| < 2.4 \) and with \(p_T > 0.4 \) GeV, \(\Delta p_T^{lead} \) is the bin width, and \(\Delta N \) is the number of events with a leading charged particle or leading jet in the bin.

IV. RESULTS

Figure 1 shows the integrated distributions for the leading charged particle and leading jet events for \(p_T^{min} > 0.8 \) and 1 GeV, respectively. The distributions fall steeply at large transverse momenta and by construction approach unity at small \(p_T^{min} \). The turnover from a relatively flat to a steeply falling distribution takes place between 1 and 10 GeV. However, the turnover point is different for the leading charged particles and the leading jet measurements. This reflects the fact that when particles are clustered into jets more energy from additional particles is collected within the jet cone. In fact, when the jet cone size is reduced, the leading jet distribution approaches the leading charged-particle distribution.

For the comparison of the data to predictions of QCD MC generators, the latter are rescaled to describe the high-\(p_T^{lead} \) region. This rescaling is applied because the normalization to the total visible cross section, which depends on the low-\(p_T \) regularization, affects the values of \(r \) also at
FIG. 1 (color online). The integrated yield, \(r(p_{T,\text{min}}) \), of events with a leading charged particle within \(|\eta| < 2.4\) (top) and with a leading jet within \(|\eta| < 1.9\) (bottom), as a function of \(p_{T,\text{min}} \). The data are compared to predictions from several PYTHIA 6 tunes (left) and various other event generators (right). The lower panels show the ratios of the MC and the data yields (MC/Data). The error bars indicate the statistical uncertainty, and the red shaded area (only visible in the ratio plots) represents the systematic uncertainty. The predictions are scaled to the measured value of \(r(p_{T,\text{lead}} > 9.0 \text{ GeV}) \) (top) and \(r(p_{T,\text{lead}} > 14.3 \text{ GeV}) \) (bottom). The prediction from PYTHIA 6 with MPI off and no parton saturation is not shown in the MC/data ratio plot (left) because of the large disagreement with the data.
high p_T^{lead}, where in fact theoretical predictions are more robust and agree better with the data. The exact choice of the normalization point is arbitrary—$r(p_T^{\text{lead}} > 9.0 \text{ GeV})$ for the leading charged particle and $r(p_T^{\text{lead}} > 14.3 \text{ GeV})$ for the leading jet—and the conclusions from this study are drawn from the shape of the distributions alone. The predictions at small p_T^{lead} thus give information on the modelling of the transition region from large to small p_T^{lead}.

In Fig. 1 (left plots), the yields $r(p_T^{\text{min}})$ as a function of p_T^{min} are compared to the predictions of the event generator PYTHIA 6 with tunes Z2* and CUET, as well as with the default version of PYTHIA 6, both with and without MPI. Also shown is the impact of turning off the regularization of the cross section, labeled “PYTHIA 6 (default, MPI off, no sat).” At low p_T^{min}, the distribution predicted by this latter model differs by more than 1 order of magnitude from predictions with the regularized cross section.

In Fig. 1 (right plots), the leading charged particle and leading jet data are compared with PYTHIA 6 with tunes 4C, CUET, and MONASH; HERWIG++ (version 2.7.0) with tune UE-EE-5C; EPOS (version 1.99) with LHC tune; and QGSHI2-04.

The leading charged particle and leading jet cross sections are best described by EPOS, which deviates only by up to 10% from the data at very low p_T^{min} and reproduces the data well for $p_T^{\text{min}} > 4 \text{ GeV}$. The event generator HERWIG++ (UE-EE-5C tune) describes the leading jet cross sections fairly well but does not reproduce the transition from large to small p_T in the leading charged-particle cross section. The event generators PYTHIA 6 (Z2* and CUET tunes) and PYTHIA 8 (4C, CUET, and MONASH tunes) predict a somewhat different shape for the measured distributions at small p_T.

The comparison of the MC predictions for MPI switched on and off indicates that the effect of MPI is small for leading charged particles, since the particle multiplicity plays only a minor role. However, when clustering particles into jets, the additional particles from MPI play a role, and a large difference is seen when such interactions are switched off in the simulation as in Fig. 1 (bottom left); this brings PYTHIA 6 closer to the data at low p_T^{min}.

The predictions with MPI and saturation turned off (dashed curves in Fig. 1, left plots) exhibit a significant deviation from the data at small p_T.

In general, PYTHIA and HERWIG++ describe the trend of the measured distributions but fail to reproduce the details in the $O(1–5 \text{ GeV})$ region, which calls for an improvement in their modelling of the transition from the nonperturbative to perturbative regime.

V. SUMMARY

The integrated yields of events with a leading charged particle or a leading charged-particle jet with p_T above a given p_T^{min} threshold, starting at $p_T^{\text{min}} = 0.8$ and 1 GeV, respectively, have been measured in pp collisions at $\sqrt{s} = 8 \text{ TeV}$ in a data sample corresponding to an integrated luminosity of $45 \mu\text{b}^{-1}$. The particles and jets are measured in the pseudorapidity ranges $|\eta| < 2.4$ and 1.9, respectively.

The yields are found to be relatively flat in the p_T^{min} region around 1 GeV—where the fixed-order perturbative parton-parton cross section diverges in the absence of any mechanism that saturates or unitarizes the pQCD scattering—followed by a steep decrease for $p_T^{\text{min}} > 10 \text{ GeV}$. The flattening behavior observed at very low p_T^{min} is best described by EPOS, which deviates by at most 10% from the data. The comparison of the data with different phenomenological predictions of hadronic interaction models may help to improve the description of the transition between the perturbative and nonperturbative QCD regimes, which is dominated by the effects of parton density saturation and multiple partonic interactions.

ACKNOWLEDGMENTS

We congratulate our colleagues at the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. We are very grateful to the TOTEM Collaboration for making their trigger signal available to CMS and for providing the additional tools required to analyze the acquired data. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNSR and FWO (Belgium); CNPq, CAPES, FAPEP, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); and DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research
Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from the European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR Project No. 20108T4XTM (Italy); the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the National Priorities Research Program by Qatar National Research Fund; and Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University (Thailand).

PRODUCTION OF LEADING CHARGED PARTICLES AND...

(CMS Collaboration)

1 Yerevan Physics Institute, Yerevan, Armenia
2 Institut für Hochenergiephysik der OeAW, Wien, Austria
3 National Centre for Particle and High Energy Physics, Minsk, Belarus
4 Universiteit Antwerpen, Antwerpen, Belgium
5 Vrije Universiteit Brussel, Brussel, Belgium
6 Université Libre de Bruxelles, Bruxelles, Belgium
7 Ghent University, Ghent, Belgium
8 Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9 Université de Mons, Mons, Belgium
10 Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
11 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12 Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil
13 Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
14 University of Sofia, Sofia, Bulgaria
15 Institute of High Energy Physics, Beijing, China
16 State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
17 Universidad de Los Andes, Bogota, Colombia
18 University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
19 University of Split, Faculty of Science, Split, Croatia
20 Institute Rudjer Boskovic, Zagreb, Croatia
21 University of Cyprus, Nicosia, Cyprus
22 Charles University, Prague, Czech Republic
23 Academy of Scientific Research and Technology of the Arab Republic of Egypt, Cairo, Egypt
24 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
25 Department of Physics, University of Helsinki, Helsinki, Finland
26 Helsinki Institute of Physics, Helsinki, Finland
27 Lappeenranta University of Technology, Lappeenranta, Finland
28 DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
29 Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
30 Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
31 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
32 Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
33 Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
34 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
35 RWTH Aachen University, II. Physikalisches Institut, Aachen, Germany
36 RWTH Aachen University, III. Physikalisches Institut, Aachen, Germany
37 Deutsches Elektronen-Synchrotron, Hamburg, Germany
38 University of Hamburg, Hamburg, Germany
39 Institut für Experimentelle Kernphysik, Karlsruhe, Germany
40 Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
41 University of Athens, Athens, Greece
42 University of Ioánnina, Ioánnina, Greece
43 Wigner Research Centre for Physics, Budapest, Hungary
44 Institute of Nuclear Research ATOMKI, Debrecen, Hungary
45 University of Debrecen, Debrecen, Hungary
46 National Institute of Science Education and Research, Bhubaneswar, India
47 Panjab University, Chandigarh, India
45 University of Delhi, Delhi, India
52 Saha Institute of Nuclear Physics, Kolkata, India
50 Tata Institute of Fundamental Research, Mumbai, India
51 Indian Institute of Science Education and Research (IISER), Pune, India
53 Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
54 University College Dublin, Dublin, Ireland
55 INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
58a INFN Sezione di Bari
58b Università di Bari
55c Politecnico di Bari
56 INFN Sezione di Bologna, Università di Bologna, Bologna, Italy
58a INFN Sezione di Bologna
58b Università di Bologna
57 INFN Sezione di Catania, Università di Catania, CSFNSM, Catania, Italy
57a INFN Sezione di Catania
57b Università di Catania
57c CSFNSM
58 INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
58a INFN Sezione di Firenze
58b Università di Firenze
59 INFN Laboratori Nazionali di Frascati, Frascati, Italy
60 INFN Sezione di Genova, Università di Genova, Genova, Italy
60a INFN Sezione di Genova
60b Università di Genova
61 INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
61a INFN Sezione di Milano-Bicocca
61b Università di Milano-Bicocca
62 INFN Sezione di Napoli, Università di Napoli ‘Federico II’, Napoli, Italy,
Università della Basilicata, Potenza, Italy, Università G. Marconi, Roma, Italy
62a INFN Sezione di Napoli
62b Università di Napoli ‘Federico II’
62c Università della Basilicata
62d Università G. Marconi
63 INFN Sezione di Padova, Università di Padova, Padova, Italy, Università di Trento, Trento, Italy
63a INFN Sezione di Padova
63b Università di Padova
63c Università di Trento
64 INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
64a INFN Sezione di Pavia
64b Università di Pavia
65 INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
65a INFN Sezione di Perugia
65b Università di Perugia
66 INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy
66a INFN Sezione di Pisa
66b Università di Pisa
66c Scuola Normale Superiore di Pisa
67 INFN Sezione di Roma, Università di Roma, Roma, Italy
67a INFN Sezione di Roma
67b Università di Roma
68 INFN Sezione di Torino, Università di Torino, Torino, Italy,
Università del Piemonte Orientale, Novara, Italy
68a INFN Sezione di Torino
68b Università di Torino
68c Università del Piemonte Orientale
69 INFN Sezione di Trieste, Università di Trieste, Trieste, Italy
69a INFN Sezione di Trieste
69b Università di Trieste
Cornell University, Ithaca, USA
Fairfield University, Fairfield, USA
Fermi National Accelerator Laboratory, Batavia, USA
University of Florida, Gainesville, USA
Florida International University, Miami, USA
Florida State University, Tallahassee, USA
Florida Institute of Technology, Melbourne, USA
University of Illinois at Chicago (UIC), Chicago, USA
The University of Iowa, Iowa City, USA
Johns Hopkins University, Baltimore, USA
The University of Kansas, Lawrence, USA
Kansas State University, Manhattan, USA
Lawrence Livermore National Laboratory, Livermore, USA
Massachusetts Institute of Technology, Cambridge, USA
University of Minnesota, Minneapolis, USA
University of Mississippi, Oxford, USA
University of Nebraska-Lincoln, Lincoln, USA
State University of New York at Buffalo, Buffalo, USA
Northeastern University, Boston, USA
Northwestern University, Evanston, USA
University of Notre Dame, Notre Dame, USA
The Ohio State University, Columbus, USA
Princeton University, Princeton, USA
University of Puerto Rico, Mayaguez, USA
Purdue University, West Lafayette, USA
Purdue University Calumet, Hammond, USA
Rice University, Houston, USA
University of Rochester, Rochester, USA
The Rockefeller University, New York, USA
Rutgers, The State University of New Jersey, Piscataway, USA
University of Tennessee, Knoxville, USA
Texas A&M University, College Station, USA
Texas Tech University, Lubbock, USA
Vanderbilt University, Nashville, USA
University of Virginia, Charlottesville, USA
Wayne State University, Detroit, USA
University of Wisconsin, Madison, USA

Also at Vienna University of Technology, Vienna, Austria.
Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.
Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.
Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
Also at Universidade Estadual de Campinas, Campinas, Brazil.
Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.
Also at Université Libre de Bruxelles, Bruxelles, Belgium.
Also at Joint Institute for Nuclear Research, Dubna, Russia.
Also at Suez University, Suez, Egypt.
Also at British University in Egypt, Cairo, Egypt.
Also at Cairo University, Cairo, Egypt.
Also at Fayoum University, El-Fayoum, Egypt.
Also at Université de Haute Alsace, Mulhouse, France.
Also at Brandenburg University of Technology, Cottbus, Germany.
Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
Also at Eötvös Loránd University, Budapest, Hungary.
Also at University of Debrecen, Debrecen, Hungary.
Also at University of Visva-Bharati, Santiniketan, India.