On the Importance of Registers for Computability

Rati Gelashvili, Mohsen Ghaffari, Jerry Li, and Nir Shavit

MIT
{gelash, ghaffari, jerryzli}@mit.edu; shanir@csail.mit.edu

Abstract. All consensus hierarchies in the literature assume that we have, in addition to copies of a
given object, an unbounded number of registers. But why do we really need these registers?
This paper considers what would happen if one attempts to solve consensus using various objects but
without any registers. We show that under a reasonable assumption, objects like queues and stacks
cannot emulate the missing registers. We also show that, perhaps surprisingly, initialization, shown to
have no computational consequences when registers are readily available, is crucial in determining the
synchronization power of objects when no registers are allowed. Finally, we show that without registers,
the number of available objects affects the level of consensus that can be solved.

Our work thus raises the question of whether consensus hierarchies which assume an unbounded num-
ber of registers truly capture synchronization power, and begins a line of research aimed at better
understanding the interaction between read-write memory and the powerful synchronization opera-
tions available on modern architectures.

1 Introduction

In a seminal paper [Her91], Herlihy introduced the consensus hierarchy, where the synchronization power
of an object is measured by its consensus number, defined as the maximum number of processes for which
wait-free consensus is solvable using instances of the object and as many read-write registers as needed. But
do we really need these read-write registers? In this paper we consider what would happen if one attempts to
solve consensus (henceforth we will use the term "solve" to mean a wait-free solution) using various objects
without any registers.

Consider the following interesting example. It is well known [Her91] that a single queue initialized with
two items and with two registers, can solve two process consensus. We show that this is possible even if
the queue is in an arbitrary initial state, and that a queue can solve two process consensus even without
registers if it is initialized properly. Moreover, two queues in arbitrary initial states are sufficient for solving
two process consensus. On the other hand, we prove that it is impossible to solve two process consensus
using a single empty queue. In other words, unless you have multiple queues or multiple registers, a queue’s
ability to solve consensus is completely dependent on its initialization. This example motivates us to better
understand the computational effects of the number of objects and their initialization when no registers are
available.

We begin our investigation by considering a general class of objects we refer to as consistent sets, that
includes natural objects such as queues, stacks and priority queues. Most of the above examples for queues
are specific instances of our results for consistent set objects. We show that it is possible to solve two process
consensus with a single consistent set object and two registers or with two consistent set objects, even
when the objects are initialized in arbitrary states. We also show the corresponding generalization for the
impossibility result mentioned above:

Theorem 1. It is impossible to solve consensus for two processes using a single consistent set object
initialized in an empty state.

As far as we know this is the first result showing that initialization to a different natural state matters for
reaching agreement. At its core, the proof involves inductively constructing an interleaving of two solitary
executions, such that the processes cannot distinguish between running alone and running in this inter-
leaved execution. However, obtaining the indistinguishability guarantees is rather involved. It requires a new
technique to adapt the interleaving to the state of the consistent set object, and involves constructing suc-
cessive pieces of the interleaved execution separately and then merging them. The challenge is to maintain
indistinguishability, which we prove is possible because of the properties of a consistent set object.
We have so far focused on whether two processes can solve consensus using a limited number of objects. This question has practical value as typically small numbers of objects are used in most data structure implementations. However, on the more theoretical side, the work of Jayanti [Jay97] shows that robust consensus hierarchies must allow an arbitrary number of objects. Here we will assume that processes communicate using an unlimited supply of linearizable objects [HW90], and as in [GMT01, MT00, ABND+90], we will also assume that there are an unlimited number of processes in the system. Although, in this setting, our impossibility results will still hold in a weaker model where only a bounded number of processes are allowed to run concurrently. (In fact, even if the algorithms can assume that only two processes will ever run at the same time).

Let us say that an implementation is isolation-bounded if the following holds: there exists an absolute constant M, such that when the very first method call is executed in complete isolation, it takes at most M steps. Practically all natural algorithms are isolation-bounded, even when an unbounded number of processes are allowed to be concurrent. For example, all algorithms where the step-complexity of a method can be upper-bounded by a function of the maximum contention (number of concurrent processes) encountered are isolation-bounded. We will henceforth consider isolation-bounded implementations.

Consider the test-and-set task [AGTV92], a simplification of consensus in which exactly one process knows it is the winner (returns 1) and all other processes know that they are losers (return 0), and assume a corresponding linearizable test-and-set object.

We begin by showing the following results that capture the effects of having registers:

Theorem 2. It is impossible to implement an isolation-bounded test-and-set object for an unbounded number of processes using any number of (possibly infinitely many) empty queues (or empty stacks).

The proof of this theorem is interesting as it follows along lines that have, as far as we know, never been used before in deriving shared-memory lower bounds. Essentially, we wish to reduce the general case in which infinitely many processes access infinitely many queues, to the case where infinitely many processes access only finitely many queues in their solo executions. Once reduced, we can use a counting argument to find two processes whose solo executions can be interleaved so that for both processes running in the interleaved execution, their execution is indistinguishable from running alone. To achieve this reduction, we use an argument, akin to diagonalization, to produce an infinite set of processes for which the desired property essentially holds.\(^1\)

On the other hand, if read-write registers are available, one can use the tournament tree construction from [AAG+10] to get the following result

Theorem 3. There is an implementation of an isolation-bounded test-and-set object for an unbounded number of processes using infinitely many consistent set objects (in any initial configuration) and read-write registers.

These theorems have a few important corollaries. The first of these corollaries demonstrates a fundamental difference between registers and objects like stacks and queues.

Corollary 1. It is impossible to implement a read-write register in an isolation-bounded way using any number of (possibly infinitely many) empty queues (stacks).

Interestingly, if number of processors in the system is bounded, simulations a read-write register exist [BNP97].

The second corollary is about initialization. Algorithms for consensus usually assume that the objects and registers are initialized in a certain way. In fact, the consensus number of an object can change depending on the initial state. Consider an object with a consensus number at least two that has an additional “invalid” state, unreachable from all other states, such that in the invalid state, all method calls return null. Clearly, the object initialized in the invalid state has consensus number one.

But generally, in most initial states the object will have the same consensus number. For instance, as shown in [BGA94], this is always true for states reachable from each other.\(^2\) Our second corollary shows that perhaps surprisingly, for some objects the difference in the synchronization power in these initial states can still be quite significant:

\(^1\)We remark that our proof requires the axiom of countable choice, which we will assume without comment when necessary.

\(^2\)In the above example where the consensus number changed, no state was reachable from the invalid state.
Corollary 2. It is impossible to implement a queue (a stack) containing one element in its initial state using any number of (possibly infinitely many) empty queues (stacks) in an isolation-bounded way.

2 Consistent Sets and Two Consensus

Let us define a class of objects, that we will call consistent sets. Each consistent set object represents a data-structure of items and implements two linearizable methods: insert(item) and remove(). We say that a consistent set object contains an item, if the item has not been removed since its last insertion in the set. Assume that \(s_1, s_2, \ldots, s_m \) are the items contained in some consistent set object, whereby \(s_1 \) was inserted before \(s_2 \), etc, before \(s_m \). The remove() operation returns one of the items \(s_i \), selected based on a fixed function \(F \), i.e. \(s_i = F(s_1, s_2, \ldots, s_m) \). If \(m = 0 \), then a special value null (which can never be an item contained in the set) is returned instead. A consistent set object can be intialized to an empty state (containing 0 items), or with any finite number of items pre-inserted in an arbitrary fixed order.

Each consistent set object has its function \(F \), defined for all possible item sequences that satisfies the following two consistency properties:

- If there exist (possibly empty) sequences of items \(L, M, R \), such that \(F(L, s_i, M, s_j, R) = s_i \), then there do not exist item sequences (represented by dots), so that \(F(\ldots, s_i, \ldots, s_j, \ldots) = s_j \).
- If there exist (possibly empty) sequences of items \(L, M, R \), such that \(F(L, s_i, M, s_j, R) = s_j \), then there do not exist possible item sequences (represented by dots), so that \(F(\ldots, s_j, \ldots, s_i, \ldots) = s_i \).

The exact choice of function \(F \) determines precise semantics of the data-structure. For instance, a first-in-first-out queue, a stack and a priority queue are all consistent set objects and correspond to particular choices of \(F \): for a queue \(F(s_1, \ldots, s_m) = s_1 \), for stack \(F \) picks \(s_m \) and for a priority queue it picks the item with the maximum (minimum) priority.

Lemma 1. It is possible to solve wait-free two process consensus using any consistent set object \(O \), initialized with a finite number of arbitrary items in an arbitrary order.

Proof. Let \(W \) be an item that is different from all initial items in \(O \). We claim that the algorithm described in pseudo-code on Figure 1 solves wait-free consensus for two processes. It is straightforward to show wait-freedom, so it suffices to demonstrate that the algorithm solves consensus. It is also straightforward to show that each process returns either its own value or the other process’s value. For \(i \in \{0, 1\} \), let \(v_i \) denote the value that process \(i \) gets as input. Suppose for the sake of contradiction that the processes return different values. There are two cases.

Process \(i \) returns \(v_1 \), for \(i \in \{0, 1\} \): By inspection, the only way that process 1 can return \(v_1 \) is if it returns at line 9, that is, it enters the while loop then removes \(W \). There are two sub-cases. Suppose process 0 returns on line 4, so that it returned since it saw Proposed[1] = \(\perp \), and returns \(v_0 \). By inspection, this is only possible if this occurs before process 1 executes line 3, which implies that process 0 executes line 2 before process 1 executes line 4, which implies that when process 1 reads Proposed[0] on line 4, it will see \(v_0 \), and thus will return it, which is a contradiction. Alternatively, process 0 could return on line 8, but this would imply that on line 7, in some iteration of the loop, removes \(W \). Since \(W \) is only inserted once into the consistent set, this is a contradiction, since process 1 must remove it as well.

Process \(i \) returns \(v_1 \), for \(i \in \{0, 1\} \): By inspection, the only way that process 0 can return \(v_1 \) is if it returns on line 10, that is, it sees an empty consistent set. There are again two sub-cases, since process 1 can return \(v_0 \) in one of two ways. Suppose process 1 returns on line 5. Then by that point in the execution, process 1 has already executed \(O.insert(W) \). Then, when process 0 enters the while loop, it is guaranteed to eventually remove \(W \) since it is the only process removing elements from the consistent set, so it will return \(v_0 \) as well, which is a contradiction. Thus, suppose process 1 returns on line 11. But this happens after process 1 performs \(O.insert(W) \), and neither process can see \(W \) while removing elements from the consistent set until the set is empty, which is a contradiction.

Let us next consider the synchronization power of consistent sets without registers.

Lemma 2. It is possible to solve wait-free two process consensus using any two consistent set objects \(O_0 \) and \(O_1 \), initialized with a finite number of arbitrary items in an arbitrary order.
Proof. The algorithm is described on Figure 2. Recall F is the function which uniquely defines the consistent set. We have two consistent set objects: O_0, where process O inserts to, and O_1, where process 1 inserts to. Inserted elements are pairs of form $\{P_i, v_i\}$ and $\{Q_i, v_i\}$, where v_i is the input of process i, and P_i or Q_i are two different prefixes, such that the corresponding pairs are not the same as any of the initial items in sets O_i.

We claim that the algorithm solves consensus. As with the proof of Lemma 1, let v_i be the input of the process i, for $i \in \{0, 1\}$. It is again straightforward to see that the algorithm is wait-free. Thus it suffices to prove that the processes will return the same value. Suppose for the sake of contradiction that the processes return different values. Notice by the definition of a consistent set, if a process’s call to remLW proves that the processes will return the same value. Suppose for the sake of contradiction that the processes return different values. Notice by the definition of a consistent set, if a process’s call to $\text{remLW}(O)$ returns $\{L, v\}$, then there must have been a previous remove operation performed on O which returned the unique other element e inserted into O with $e.\text{second} = v$ and $e.\text{first} \in \{P_0, P_1, Q_0, Q_1 \}$. Moreover, if e was removed due to a remLW operation, that operation would return $\{W, v\}$.

There are two cases.

Process i returns v_i, for $i \in \{0, 1\}$: By inspection, there is one way for process 0 to return v_0, which is to return on line 7, which implies that $a_0.\text{first} = W$ and $a_1 = \text{null}$. That $a_1 = \text{null}$ implies that process 0 executes line 4 before process 1 executes line 13, which implies that $b_0 \neq \text{null}$. Since $a_0.\text{first} = W$, this implies that $b_0.\text{first} = L$. Moreover, since $a_1 = \text{null}$, this implies that $b_1.\text{first} = W$, which is a contradiction, as then process 1 cannot return v_1.

Process i returns v_{i-1}, for $i \in \{0, 1\}$: By inspection, there is one way for process 1 to return v_0, which is for it to fail if statement on line 17. To fail this if statement means that $b_0.\text{first} = L$ and $b_1.\text{first} = W$ (since $b_1 \neq \text{null}$). Since $b_0.\text{first} = L$, this implies that process 1 finishes line 15 after process 1 finishes line 5, and it also implies that $a_0.\text{first} = W$. This implies that process 0 finishes executing line 4 before process 1 starts executing line 16, so the only way that $b_1.\text{first} = W$ is if $a_1 = \text{null}$, thus process 0 will return v_0 as well.

Any algorithm for two-consensus (including the algorithms above) can be used to solve test-and-set for two processes, simply by having each process return 1 instead of its own value and 0 otherwise.

Let us call a state of an instance of any consistent set object O lucky, if it contains only a single copy of some item W.

Lemma 3. It is possible to implement a test-and-set object for an unbounded number of processes using a single consistent set object O initialized in a lucky state.

Proof. The algorithm for each process is to simply remove items from O until observing W or null. In the first case, the process returns 1 and in the second case, it returns 0. By the semantics of the data-structure, one and only one process will remove W and return 1. Moreover, that process can in fact be linearized as the
Since the other process has dequeued \(W \) value. Otherwise, it returns the value of the other process (we show below how), and the exact argument \(p \) later than all original items of \(O \) these executions is either an \(\text{in an empty state} \). For each process \(i \) wait-free test-and-set implementation for two processes using just a single consistent set object \(O \) initialized in an empty state.

Proof. A first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(A \) first-in-first-out queue is such an object.

Lemma 4. There exists a consistent set object \(O \), such that it is possible to solve wait-free two process consensus with \(O \) initialized in a lucky state.

Proof. A first-in-first-out queue is such an object. The algorithm for each process is to first enqueue its own item and then keep dequeuing until either observing \(W \) or \(\text{null} \). In the first case, the process returns own value. Otherwise, it returns the value of the other process (we show below how), and the exact argument from **Lemma 3** finishes the correctness proof.

To show how the process knows the value to return, consider the process \(p \) that observes \(\text{null} \) at time \(t \). Since the other process has dequeued \(W \) by time \(t \), it must have already enqueued its value, which comes later than all original items of \(O \) (including \(W \)) in the first-in-first-out order. The other item with this property is the input value of \(p \) itself. Therefore, the last two items dequeued by \(p \) must be the input values of the processes, \(p \) knows its own value and can simply tell the value of the other process.

Given these insights, the following result may be surprising:

Theorem 1. It is impossible to solve wait-free two process consensus using a single consistent set object \(O \) initialized in an empty state.

Proof. Assume the contrary. Then the existence of the consensus protocol implies that there also exists a wait-free test-and-set implementation for two processes using just a single consistent set object \(O \) initialized in an empty state. For each process \(i \in \{0, 1\} \) there exists a solo execution where process \(i \) runs in isolation and returns \(1 \) after some finite number \(t_i \) of steps. Let \(E_0 \) and \(E_1 \) be these solo executions. Each step in these executions is either an \(\text{insert}(\text{item}) \) or \(\text{remove}() \) call on \(O \).

We obtain a contradiction by constructing a schedule where both processes are executed, but never observe any difference from their solo executions, i.e. the execution of process \(i \) is indistinguishable from \(E_i \) from its prospective. Formally, given a serial execution \(E_i \) which only makes method calls to \(O \), and a linearized execution \(E \) containing \(E_i \) and other method calls from other processes to \(O \), we say that \(E_i \) is **indistinguishable** from \(E \) if for every remove operation in \(E_i \), it gets the same response as it does in \(E \). Clearly, if process \(i \) has solo execution \(E_i \) and \(E \) is an execution which is indistinguishable from \(E_i \), it must return \(1 \) in \(E \), so if an execution \(E \) is indistinguishable from two solo executions, we derive a contradiction.

Fig. 2: Two process consensus using two consistent sets objects \(O_0 \) and \(O_1 \).
To construct this interleaving, we use induction on total number of steps in E_0 and E_1 to prove the existence of the interleaved execution. We say the first ℓ steps of an execution form an ℓ-prefix.

The following proposition provides the base case for induction.

Proposition 1. If for one of the processes, say for process j, $t_j = 0$ holds, then it is possible to interleave the executions E_0 and E_1 such that the interleaved execution is indistinguishable from the solo execution for each process.

Proof. The number of steps in solo execution E_j is 0, so we start by running process j which immediately returns as in E_j and does not change the state of the object O. Thus we then complete the interleaved execution by running process $1 - j$ until it returns, and because the starting state of O is empty as in E_{1-j}, this execution also precisely matches E_{1-j}.

For inductive step, assume we know that if the total number of steps in two solo executions E_0 and E_1 is less than k, then it is possible to interleave them such that the interleaved execution is indistinguishable from the solo execution for each process.

We now consider several cases, each requiring a different treatment. By adjusting formulations it is possible to merge some cases, but the particular structure is chosen for clarity. Let the total number of steps in E_0 and E_1 be k.

Case 1: A mute prefix: An ℓ-prefix for a solo execution for process i is called mute if O remains empty after the prefix is executed by process i in isolation.

Proposition 2. If one of the executions, say execution E_j contains a non-empty mute prefix, then it is possible to interleave the executions E_0 and E_1 such that the interleaved execution is indistinguishable from the solo execution for each process.

Proof. We start the interleaved execution by letting process j execute the mute prefix of E_j. This is possible because we actually run process j in isolation, so it simply executes the mute prefix exactly as in E_j. Afterwards, by definition of the mute prefix, O is empty. Moreover, the total number of steps in the solo executions that the rest of the interleaved execution should match has strictly decreased. Therefore, we can use the inductive hypothesis for the same E_{1-j} and E_j without the non-empty prefix to construct the rest of the interleaved execution.

Thus we may assume that the solo execution E_i for process $i \in \{0, 1\}$ does not contain a mute prefix and it consists of non-zero number of steps. Define $f_i(\ell)$ to be the item that would be removed by a remove() call right after executing an ℓ-prefix of E_i in isolation.

Case 2: A barrier: For $i \in \{0, 1\}$, let s_1, s_2, \ldots, s_m be the items that are inserted and removed from O during the solo execution E_i by process i, in order of their insertion. Let g_i be the item that would be removed last if we first inserted all of these items in O in order, and then removed them one-by-one. Note that this does not have to be s_m. We call $f_i(\ell)$ a barrier if $F(f_i(\ell), g_{1-i}) = g_{1-i}$.

Example 1. The motivating example of a barrier is when O is a priority queue which returns elements with high priority first. Consider the situation where process 0 (say) inserts a number of elements into the priority queue with priority ≤ 1 then some elements with priority 2 in its solo execution, and process 1 inserts many elements into O with priorities either 2 or 3 in its solo execution. Then, the prefix of process 0 which consists of it inserting elements with priority ≤ 1 forms a barrier, and such a prefix is natural to consider because this essentially acts like a mute prefix to process 1 in that process 1 will never see anything from this prefix, and mute prefixes are easy to induct on.

To reason about this case, we need a technical property about the behavior of consistent sets which is obvious for simple objects such as queues, stacks, and priority queues.

Proposition 3. Consider a serial execution E consisting of calls to a consistent set object O. Let s be some element inserted and subsequently removed during E, and let E' be the execution constructed by removing insert(s) and the remove() which returned s. Then the output of all other remove() operations in E' is unchanged.
Proof. We will actually prove a slightly stronger statement: that at any point in the execution \(E\), if \(O\) contains \(s\), at that same point in time in \(E'\), the state of \(O\) is identical except with \(s\) removed, and if \(O\) does not contain \(s\) then at the same point in time in \(E'\), the state of \(O\) is exactly the same. This clearly implies our claim.

To prove this stronger statement, we proceed by contradiction. Let \(R_1\) be the first operation after which the states of \(O\) in \(E\) and \(E'\) do not follow this invariant. By inspection this must be a remove operation. Denote the remove() which returned \(s\) by \(R\). Clearly the behavior of \(O\) at any state before insert() occurs is the same in \(E\) and \(E'\), so \(R_1\) must happen after the insertion of \(s\). Similarly, if \(R_1\) was after \(R\) in \(E\), then by the invariant, before \(R\) the state of \(O\) in \(E\) and \(E'\) is identical. Thus the last remaining case is if \(R_1\) was scheduled before \(R\) in \(E\) but after insert(). Suppose in \(E\) it returns some element \(s'\) and in \(E'\) it returns some element \(s'' \neq s'\). Let \(A = s_1, \ldots, s_\ell\) be the list of objects in present in \(O\) ordered by insertion time if we execute \(E\) but pause right before executing \(R_1\). Clearly this is of the form \(L, s', M, s'', R\) or \(L, s'', M, s', R\) for some \(L, M, R\), where \(s\) is in either \(L, M,\) or \(R\). W.l.o.g. assume that it is of the former type, and assume \(s \in L\) (the other cases are identical). We know that \(F(A) = s'\). Form \(L'\) by removing \(s\) from \(L\), and let \(A' = L', s', M, s'', R\). Then by consistency, \(F(A') \neq s''\). But by the invariant, before \(R_1\), the state of \(O\) in \(E'\) was exactly \(A'\), which is impossible. This proves the proposition.

Now we have the tools to do the induction in the presence of a barrier:

Proposition 4. If one of the executions, say execution \(E_j\), contains a barrier \(f_j(\ell)\), then it is possible to interleave the executions \(E_0\) and \(E_1\) such that the interleaved execution is indistinguishable from the solo execution for each process.

Proof. Consider the largest \(\ell\) so that the \(\ell\)-prefix of \(E_j\) is a barrier. We start building the desired interleaved execution by executing the \(\ell\)-prefix \(p_j\) of \(E_j\). This leaves a number of items in \(O\), so in particular \(f_j(\ell)\) is well-defined. Now, let us trim the remaining piece of \(E_j\): we get rid of all remove() operations that in the solo execution remove items inserted in \(p_j\). Thus, the trimmed schedule \(\tilde{E}_j\) does not contain the \(\ell\)-prefix of \(E_j\) and any later remove() operations that in the solo execution return items inserted during the \(\ell\)-prefix. By the above proposition, every remove() operation in \(\tilde{E}_j\) returns the same thing it did in \(E_j\). In particular, none of them return null because none of them could have returned null in \(E_j\) as otherwise \(\tilde{E}_j\) would have had a mute prefix.

Because the number of operations in \(\tilde{E}_j\) is strictly smaller than in \(E_j\), using our inductive hypothesis let us construct an indistinguishable interleaved execution \(X\) for executions \(\tilde{E}_j\) and \(E_{1-j}\) assuming that \(O\) started in an empty state. Note that execution \(X\) is only indistinguishable if \(O\) is initially empty and moreover, it does not immediately provide any guarantees for the original execution \(E_j\).

However, we will show that it is possible to interleave the trimmed operations from \(E_j\) back into \(X\) to create \(X'\) so that \(p_jX'\) is a valid interleaving of \(E_0\) and \(E_1\) and is indistinguishable to both processes from their solo executions. Assume the opposite, and consider first time \(t\) at which we are unable to indistinguishably schedule the next operation without violating the above invariant. Since the only operations which provide feedback are remove() operations, we can assume without the loss of generality that the next operations to be scheduled for both processes are both remove() operations.

Suppose at time \(t\), the next operation scheduled in \(X\) is by process \(1-j\). The operation has to be a remove() that returns some item \(s\) instead of another item \(r \neq s\) that would be returned at this point in \(E_{1-j}\). By our assumption, all previous operations have been indistinguishable, so \(O\) has to contain item \(r\) at time \(t\). Also, \(r\) is clearly inserted by process \(1-j\), since it is removed by process \(1-j\) in the solo execution \(E_{1-j}\). If \(s\) was inserted during \(X\) (and not \(p_j\)), since we still insert the items according to \(X\) in the new interleaved execution, during the corresponding remove() operation in \(X\) items \(s\) and \(r\) would certainly be contained in \(O\) in the exact same order as during the above remove() operation in the interleaved execution. But since \(X\) is indistinguishable from \(E_{1-j}\), the removal in \(X\) returns \(r\) and not \(s\), contradicting the consistency of \(O\).

If \(s\) was inserted during \(p_j\), let us w.l.o.g. assume that \(f_j(\ell)\) was inserted after \(s\) and \(g_{1-j}\) after \(r\). We will show that \(F(s, r) = r\), a contradiction since that means that the remove operation at time \(t\) would return \(r\) instead of \(s\), as \(s\) is inserted before \(r\) in the execution of interest since it was inserted during \(p_j\). Consider \(u = F(s, f_j(\ell), r, g_{1-j})\).\(^3\) We know \(F(r, g_{1-j}) = r\) by the definition of \(g_{1-j}\), so \(u
eq g_{1-j}\) by the definition of

\(^3\)The other cases are symmetric: we would consider \(F(f_j(\ell), s, r, g_{1-j}), F(s, f_j(\ell), g_{1-j}, r)\) or \(F(f_j(\ell), s, g_{1-j}, r)\).
consistent sets. Similarly, since \(F(f_j(\ell), g_{1-j}) = g_{1-j} \) since \(f_j(\ell) \) is a barrier, we know \(u \neq f_j(\ell) \). Finally, \(F(s, f_j(\ell)) = f_j(\ell) \) by definition of \(f_j(\ell) \), so we know that \(u \neq s \). Thus, \(u = r \), and so by the properties of consistent sets we conclude that \(F(s, r) = r \).

Now assume that the next operation according to \(X \) is by process \(j \). The next operation to be scheduled for \(E_j \) must be a remove (which may have been trimmed). Call this operation \(R \). By assumption, it removes some item \(s \) instead of an item \(r \neq s \) which would be removed in \(E_j \) at this step. If \(s \) was inserted by process \(j \), then in solo execution \(E_j \) process \(j \) should have observed items \(s \) and \(r \) in \(O \) in the same order as here, but removed \(r \), contradicting the consistency property.

Thus suppose \(s \) was inserted by process \(1 - j \). We claim that \(R \) must have been trimmed, since otherwise \(R \) is the next remove operation in execution \(X \). But then, since all the items present in \(O \) at this point in \(X \) must also be present in \(O \) in this point in the execution we are building, since we have included all the actions of \(X \) up to this point in our execution, this implies by the definition of consistent set objects, that in \(X \), \(R \) must also remove \(s \), contradicting the indistinguishability of \(X \) from solo executions.

But if \(R \) was trimmed and would at this point return some \(s \) inserted by process \(1 - j \), we claim that there exists a \(\ell' > \ell \) so that the \(\ell' \)-prefix of \(E_j \) would also be a barrier, which contradicts our choice of \(\ell \). Indeed, let \(r \) be the item that \(R \), the last remove() up to this point in the solo execution \(E_j \), removes and let \(v \) be the item that would be removed if we executed another remove() right after \(E_j \) (\(v \) has to exist, otherwise the whole execution \(E_j \) is a mute prefix). Since the removal of \(r \) is trimmed, insert() must be in the \(p_j \). Assume without the loss of generality that \(f_j(l) \) is inserted after \(r \) and before \(v \) in \(E_j \) and consider \(F(r, f_j(l), v) \).\(^4\) \(F(r, f_j(l)) = f_j(l) \) must hold by the definition of \(f_j(l) \), and since the last trimmed removal also observed \(v \) but removed \(r \), \(F(r, v) = r \) holds. By the definition of a barrier, \(F(f_j(l), g_{1-j}) = g_{1-j} \), and so combining these three facts and using consistency like before we get \(F(r, f_j(l), v, g_{1-j}) = g_{1-j} \) which again by consistency of \(F \) implies that \(F(v, g_{1-j}) = g_{1-j} \). Thus if we take the prefix of \(E_j \) up to and including \(R \), we get another barrier which has length strictly larger than \(\ell \), which is a contradiction. This completes the proof of the proposition.

Case 3: No mute prefixes or barriers: The rest of the proof of the main theorem considers the case when none of the executions \(E_i \) (\(i \in \{0, 1\} \)) contains a mute prefix or a barrier. The application of the inductive hypothesis (albeit twice) and the trimming technique is still required, but the partitioning of executions and the proof details differ.

Recall the definition of \(g_i \). Let \(s_1, s_2, \ldots, s_m \) be the items that are inserted and removed from the consistent set object \(O \) during the execution \(E_i \), in order of their insertion. If we inserted all these items in an empty \(O \) in above order and then removed them one-by-one (according to \(F \) of our object), \(g_i \) is the item that would be removed the last.

Let \(P_i \) be the execution prefix of \(E_i \) that ends with the insertion of \(g_i \). Let \(Q_i \) be an execution interval of \(E_i \), starting with an operation immediately after \(P_i \) up to and including the remove() operation that returns \(g_i \) in \(E_i \). Finally, let \(R_i \) be the execution suffix of \(E_i \) consisting of all the operations after \(Q_i \). Define a trimmed execution schedule \(\tilde{Q}_i \) as \(Q_i \) but excluding all (trimmed) remove() operations that in \(E_i \) return items inserted during \(P_i \). In particular, the last removal in \(Q_i \) is trimmed and does not occur in \(\tilde{Q}_i \), since it removes \(g_i \) that is inserted during \(P_i \).

Observe that while executing \(E_i \), every removal that happens during \(R_i \) must return an item that was also inserted during \(R_i \). Otherwise, assume that a remove() operation in \(R_i \) returns an item \(\tilde{g} \) that was inserted during \(P_i \cup Q_i \), without the loss of generality before \(g_i \). When \(g_i \) was removed (at the end of \(Q_i \)), \(\tilde{g} \) was already contained in \(O \), so \(F(\tilde{g}, g_i) = g_i \) holds, contradicting the definition of \(g_i \).\(^5\)

Since the number of operations in \(P_i \) is strictly smaller than in \(E_i \) (as it does not include the removal of \(g_i \)), we use the inductive hypothesis to get an interleaved execution \(E_P \) for prefixes \(P_i \). Since \(P_i \) also contains at least one operation (insertion of \(g_i \)), we also use inductive hypothesis for execution intervals \(\tilde{Q}_i \) and \(R_i \) to get interleaved executions \(E_{Q_i} \) and \(E_{R_i} \). We start our final interleaved execution by running \(E_{Q_i} \) from the initial state, and by induction we know the processes do not observe a difference from running \(P_i \) in their respective solo executions. However, after executing \(E_P \), the consistent set object \(O \) may not empty and contains all the items that were inserted but not removed during \(E_P \). But we will first show below that after \(E_P \), it is possible to indistinguishably execute all operations (trimmed or not) of \(Q_i \) of both processes (\(i \in \{0, 1\} \)). As

\(^4\)Otherwise, considering the respective order works analogously

\(^5\)If \(\tilde{g} \) was inserted after \(g_i \), \(F(g_i, \tilde{g}) = g_i \) gives the same result
in the proof of Proposition 4, we maintain the invariant that operations in \tilde{Q}_j are executed according to the order in E_Q (with respect to each other).

Assume contrary and consider the first time t when we cannot indistinguishably schedule the next operation without violating the above invariant. Let us first consider that there is at least one operation yet to be performed from E_Q, and the first such operation is without the loss of generality by process j. Moreover, first assume that the next operation by process j is not a trimmed remove(). Using the same reasoning to Proposition 4, this critical operation must be a remove() that based on the state of O at time t returns some item s instead of item r. (for an insertion or indistinguishable removal, we would just run it). By our assumption all previous operations have been indistinguishable, so O must also contain item r at time t. Item r was inserted by process j (since it removed r in solo execution E_j) and if s was also inserted by process j, process j must have observed r and s in the same order in O in its solo execution E_j, but in solo execution r was returned, contradicting the consistency property of O. So, the item s should have been inserted by process $1-j$.

Assume insertion happened during \tilde{Q}_{1-j}. Since the removal of r was not trimmed from Q_j, r must have been inserted during \tilde{Q}_j, so the corresponding removal that was executed in E_Q observed s and r in the same order, but returned r because of the indistinguishable of E_Q, contradicting consistency. Finally, assume that the insertion of s happened during P_{1-j}. If $F(s,g_{1-j}) = g_{1-j}$ then by $F(r,g_{1-j}) = r$ (otherwise the prefix of E_j up to removing r is a barrier) we get that $F(r,s,g_{1-j}) = F(r,s,g_{1-j}) = r \Rightarrow F(r,s) = F(s,r) = r$ contradicting that s can be removed before r. Otherwise, $F(s,g_{1-j}) = s$ means that s would be removed before g_{1-j}, thus the corresponding remove() was trimmed from Q_{1-j}. Therefore, process $1-j$ has at least one pending remove() from Q_{1-j} (one that returns s in E_{1-j}). We claim that the next removal by process $1-j$ has to be precisely the trimmed remove() supposed to return s, as otherwise this next removal violates consistency (same items as in E_{1-j} are in O in the same order). In this case, we undistinguishably schedule the trimmed operation of process $1-j$ that returns s and move on.\(^6\)

Next, consider the case when again there is at least one operation yet to be performed from E_Q by process j, but the next operation of the process j is a trimmed remove(). Since this trimmed removal is not indistinguishable, say it would return an item s instead of r. Precisely for the same reasons as before, s must have been inserted by process $1-j$ and $F(r,g_{1-j}) = r$ still holds because otherwise we have a barrier in E_j. The case if s was inserted during P_{1-j} works exactly as before: if $F(s,g_{1-j}) = g_{1-j}$, we still get a contradiction $F(s,r) = F(r,s) = r$; if $F(s,g_{1-j}) = s$, then the next removal operation of process $1-j$ exists and must be precisely the trimmed operation supposed to return s in solo execution, which we can indistinguishably execute. Now assume s was inserted during Q_{1-j}. If $F(g_{1-j}, s) = g_{1-j}$, using $F(r,g_{1-j}) = r$ we get that $F(r,s) = r$. By definition of a trimmed operation, r was inserted during P_j and since E_Q is executed after E_P, r was inserted in O before s. Hence, $F(r,s) = r$ implies that it is impossible to return s before returning r. Finally, consider $F(g_{1-j}, s) = s$. But in this case, the next removal operation according to E_Q must be by process $1-j$ (because all previous operations were indistinguishable and s, inserted during E_Q by process $1-j$ is to be removed first from O), contradicting our initial assumption.

To complete this portion of the proof, we should consider the case when all operations from \tilde{Q}_j of both processes have been indistinguishably executed, but there are trimmed removal operations left in Q_0 and/or Q_1, and that we can no longer execute indistinguishably. Since all previous operations have been indistinguishable, O is not empty, and remove() operations are not supposed to return null, because that would imply the existence of a mute prefix in a solo execution. So, let us assume that the next removal applied to O would return some element s inserted by process j. If process j has a pending trimmed remove(), that removal operation must necessarily return s in the solo execution, returning any other element r would violate consistency as r and s are contained in O in both cases in the same order. Now assume only process $1-j$ has pending trimmed removals, the next of which is supposed to return item r (based on the solo execution). First of all, $F(g_{1-j}, g_j) = g_{1-j}$ holds because otherwise we would have a barrier. Also, since the pending removal is trimmed, r must have been inserted during E_P before g_{1-j} and by definition of g_{1-j}, $F(r,g_{1-j}) = r$ is true. Assume that s is inserted before g_j. Then, $F(s,g_j) = g_j$ because process j already executed its last trimmed operation that removed g_j while s was already in O. So, by consistency $F(r,s,g_{1-j}, g_j) = F(r,s,g_{1-j}, g_j) = r \Rightarrow F(r,s) = F(s,r) = r$ contradicting that s would be removed before r. If s was inserted after g_j, then $F(g_j, s) = s$, and we get $F(r,g_{1-j}, g_j, s) = r \Rightarrow F(r,s) = r$, which is

\(^6\)If the next operation of process $1-j$ was an insertion, we could have indistinguishably executed it anyway
sufficient for contradiction because in this case we know for sure that \(r \) is inserted in \(O \) before \(s \): \(r \) is inserted during \(E_P \) and \(s \) is inserted after \(g_j \) i.e. during \(E_Q \) which we execute strictly after \(E_P \).

Finally, after the above process is completed, meaning that all operations from \(P_i \) and \(Q_i \) for both processes have been executed indistinguishably, we execute the operations of \(R_i \) for \(i \in \{0, 1\} \) according to \(E_R \). We need to show that even though \(O \) was not empty to start with, all return values by removals will still be indistinguishable from the respective solo executions. Assume contrary and consider the first processes have been executed indistinguishably, we execute the operations of \(E \) during sufficient for contradiction because in this case we know for sure that \(r \) before \(E \) was not empty to start with, all return values by removals will still be indistinguishable from the respective solo executions. Assume contrary and consider the first removal from \(E_R \) executed by process \(j \) that returns a item \(s \) different from the item \(r \) returned in the solo execution \(E_j \). We have shown above that \(s \) may not be inserted by operations in \(P_j \) or \(Q_j \). If \(s \) was inserted by an operation in \(R_j \), then in \(E_R \) the current removal would have observed \(s \) and \(r \) in the same order, but there it must return \(r \) because by inductive hypothesis, \(E_R \) is undistinguishable from the corresponding solo execution. Now consider the case when \(s \) was inserted during \(E_P \) or \(E_Q \) by process \(1 - j \). Since the prefix before \(R_j \) cannot be mute, there should be at least one item that was inserted by process \(j \) in \(E_P \) or \(E_Q \) but never removed before we started executing \(E_R \). Consider all such items that are in \(O \) right after process \(j \) finishes executing \(P_j \) and \(Q_j \) in isolation, and let \(b \) be the item that a \(\text{remove}() \) operation on \(O \) would return at that point. Then we have \(F(b, g_{1-j}) = b \), because otherwise \(b \) would be a barrier. Recall that all removals in \(E_R \) return items also inserted in \(E_R \), so \(b \) is actually never removed in the solo execution, but \(r \) is. Since \(r \) is inserted during \(R_j \), after \(b \), we conclude that \(F(b, r) = r \). Finally, we know the last operation of of \(Q_{1-j} \) by process \(1 - j \) running in isolation removes \(g_{1-j} \) by definition of \(Q_{1-j} \), and at the time of that removal, \(s \) is contained in \(O \) (\(s \) is inserted during \(P_{1-j} \cup Q_{1-j} \) and not removed, because it was in \(O \) after \(E_R \) during \(E_R \) in our indistinguishable interleaved execution). Thus, \(F(g_{1-j}, s) = g_{1-j} \) or \(F(s, g_{1-j}) = g_{1-j} \) (based on whether \(s \) is inserted in \(P_{1-j} \) or \(Q_{1-j} \)). Combining above and using consistency we get \(F(b, g_{1-j}, s, r) = r \) or \(F(b, s, g_{1-j}, r) = r \) implying \(F(s, r) = r \). In addition we know that \(s \) was inserted before \(E_R \) started, thus before \(r \) was inserted, and hence our removal cannot return \(s \) before \(r \).

3 Unbounded Number of Objects

Theorem 2. It is impossible to implement an isolation-bounded test-and-set object for an unbounded number of processes using any number of (possibly infinitely many) empty queues (or empty stacks).

Proof. Let us assume contrary and consider an isolation-bounded algorithm that implements test-and-set for an unbounded number of processes with initially empty queues. Because of isolation-boundedness, any process that runs in isolation from the initial state can take at most a fixed number of steps, say \(M \), each being an \(\text{insert(item)} \) or \(\text{remove()} \) operation on one of the queues, before returning 1.

Associate to each process \(p \) the ordered list \(s_q \) of the \(M \) steps it would take if it ran in isolation. We call this quantity the signature of \(p \). Suppose each queue is touched by finitely many signatures. Let \(Q_1 \) be any queue which is touched, say by process \(p \). Then \(p \)'s signature touches at most \(M \) queues, call them \(Q_1, \ldots, Q_M \). At most finitely many other processes can touch these same queues, so there must be a process \(q \) whose signature does not touch any of the \(Q_i \). Running \(p \) then \(q \) gives us an immediate contradiction, since their actions on the queues they touch do not interact at all, and thus they cannot distinguish between running together and running in isolation, and must both return 1.

Thus we can assume that there exists a queue \(Q_1 \) such that an operation on this queue occurs in infinitely many signatures. Let \(\mathcal{P}_Q \) denote the set of processes whose signatures contain an operation on \(Q_1 \). Next, if there is a queue \(Q_2 \) such that an operation on it occurs in infinitely many signatures from \(\mathcal{P}_Q \), we consider this infinite subset \(\mathcal{P}_Q \subseteq \mathcal{P}_Q \). Inductively, we build sets \(\mathcal{P}_Q \subseteq \mathcal{P}_{i-1} \subseteq \ldots \subseteq \mathcal{P}_1 \) and choose queues \(Q_i \), until the process terminates. This can only happen at most \(M \) times, since the members of \(\mathcal{P}_M \) (if they exist) must in isolation perform the maximum number of allowed operations (i.e. \(M \) operations), namely on the queues \(Q_1, \ldots, Q_M \). Thus, we end up with an infinite set of signatures \(\mathcal{P}_m \) (\(m \leq M \)), such that each of the signatures contains an operation on each \(Q_j \) (\(1 \leq j \leq m \)), and for every other queue, an operation on it is contained only in a finite number of signatures from processes in \(\mathcal{P}_m \). We let \(\mathcal{Q} = \{Q_1, \ldots, Q_m\} \).

We can now find an infinite subset \(\mathcal{P} \subseteq \mathcal{P}_m \), such that if two processes from \(\mathcal{P} \) have signatures which involve operations on a shared queue, this queue has to be one of our selected queues \(\mathcal{Q} \). We do so inductively: choose \(p_t \in \mathcal{P}_m \) arbitrarily. This process’s signature touches at most \(M - 1 \) queues not in \(\mathcal{Q} \). Moreover, finitely many other processes in \(\mathcal{P}_m \) have signatures which touch these queues by the construction of \(\mathcal{P}_m \). Thus we
can choose a \(p_2 \in P_m \) which does not touch any of these queues, and then we recurse to find \(p_i \) for all \(i \), and we let \(P = \{ p_i \}_{i=1}^\infty \). It is straightforward to verify that this set has the desired property.

Let us now focus on the processes in \(P \) and consider only the operations they perform on queues \(Q \). Clearly, each process performs at most \(M \) such operations when run in isolation. Each operation is either \(\text{insert}() \) or \(\text{remove}() \) on some \(Q_j \), thus there are \(2m \) different types of operations. There are only finitely many different possibilities to order at most \(M \) operations of \(2m \) different types, and infinitely many processes in \(P \), thus by the pigeon-hole principle, we can find two processes \(p, q \in P \), such that their signatures both involve the same operations on the same queues in \(Q \) in exactly the same order. Moreover, they may perform actions on queues not in \(Q \), but by the construction of \(P \), the sets of queues they touch outside of \(Q \) are disjoint.

Let us execute \(p \) and \(q \) in the following “lock-step” fashion: we let \(p \) take steps until the first operation on some \(Q_j \), then we let \(q \) take its steps until it performs the same type of operation on the same \(Q_j \), etc, until they both finish. At any point in the execution when \(q \) has just taken a step, we claim that the following invariant holds: none of the processes have observed a difference from their solo executions, and each queue \(Q_j \) contains items that \(p \) inserted and items that \(q \) inserted, interleaved one-by-one. Moreover, if we only consider the items inserted by one of the processes, say \(p \), they are the same items and in the same order as in the solo execution of \(p \).

\(p \) and \(q \) could only observe a difference after a \(\text{remove}() \) call on one of the queues \(Q_{j'} \), because other queues are accessed by only one process. Now, the invariant holds initially, and if the next operation on some \(Q_j \) is insertion (necessarily the same queue for both processes, but they may insert different items), we let \(p \) insert, then \(q \) insert, so the invariant holds afterwards. If it is a removal from some \(Q_j \) for both processes, then since the items of \(p \) and \(q \) are interleaved but consistent with respective solo executions, first removal by \(p \) will return the item \(p \) previously inserted (or null) and does not observe a difference, then \(q \) does the same with its item.

Thus, we are able to execute \(p \) and \(q \), both of which cannot distinguish the execution from a solo execution and return 1 contradicting the correctness of the test-and-set implementation.

A very similar argument works for the stack, except when running processes in lock-step, if the operation is a \(\text{remove}() \), we should reverse the order and let \(q \) execute first.

On the other hand, if we have registers available implementing test-and-set becomes possible.

Theorem 3. It is possible to implement an isolation-bounded test-and-set object for an unbounded number of processes using infinitely many consistent set objects (in any initial configuration) and read-write registers.

Proof. The adaptive tournament tree from [AAG+10] is an algorithm that implements isolation-bounded test-and-set for an arbitrary number of concurrent processes.\(^7\) It requires registers and a black-box test-and-set primitive for two processes. Using Lemma 2, we can do test-and-set for two processes with just two consistent set objects initialized with a finite number of arbitrary items in an arbitrary order (or with one object and registers, per Lemma 1). This two process test-and-set object can be directly plugged into the [AAG+10] construction as the building block. The other crucial building block is a splitter object [MA94], which is easily constructed using registers. The algorithm is isolation-bounded, since any process running in isolation from the initial state stops in the first splitter and participates only in a few two-process test-and-sets.

Corollary 1. It is impossible to implement a read-write register in an isolation-bounded way using any number of (possibly infinitely many) empty queues (stacks).

Proof. Assume contrary. Then we can use the same algorithm as in Theorem 3 to implement a test-and-set object for an unbounded number of processes, except we replace each register in the construction with an isolation-bounded register implementation out of empty queues. The resulting test-and-set construction would then only use empty queues and would be isolation-bounded, because both the original implementation and the new register implementation are isolation-bounded. In fact, if the constant bounds on the number of steps are \(c_1 \) and \(c_2 \), the bound for the new construction would be \(c_1c_2 \). Such a construction, however, contradicts Theorem 2.

\(^7\)We consider non-randomized version of the construction.
Corollary 2. It is impossible to implement a queue (a stack) containing one element in its initial state using any number of (possibly infinitely many) empty queues (stacks) in an isolation-bounded way.

Proof. By Lemma 3, a single consistent set object initialized in a lucky state can implement a wait-free test-and-set object for unbounded number of processes. A queue is a consistent set object and a state with a single item is a lucky state. By inspection, the test-and-set algorithm from Lemma 3 using a queue with a single element is isolation-bounded (an initial isolated run involves just one removal). Therefore, being able to implement a queue with a single item would immediately allow implementing an isolation-bounded test-and-set object for an unbounded number of processes, which by Theorem 2 is impossible using any number of empty queues.

4 Acknowledgements

Support is gratefully acknowledged from the National Science Foundation under grants CCF-1217921, CCF-1301926, and IIS-1447786, the Department of Energy under grant ER26116/DE-SC0008923, and the Oracle and Intel corporations.

The authors would like to thank Eli Gafni and Yehuda Afek for helpful conversations and feedback.

References

