Pyruvate Kinase Isoform Expression Alters Nucleotide Synthesis to Impact Cell Proliferation

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

As Published	http://dx.doi.org/10.1016/j.molcel.2014.10.027
Publisher	Elsevier
Version	Author's final manuscript
Accessed	Fri Apr 05 20:05:43 EDT 2019
Citable Link	http://hdl.handle.net/1721.1/101246
Terms of Use	Creative Commons Attribution-NonCommercial-NoDerivs License
Detailed Terms	http://creativecommons.org/licenses/by-nc-nd/4.0/
Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation

Sophia Y. Lunt1,2, Vinayak Muralidhar1,3, Aaron M. Hosios1,4, William J. Israelsen1,4, Dan Y. Gui1,4, Lauren Newhouse2, Martin Ogrodzinski2,5, Vivian Hecht1,6, Kali Xu1, Paula N. Marin Acevedo1, Daniel P. Hollern2, Gary Bellinger1, Talya L. Dayton1,4, Stefan Christen7,8, Ilaria Elia7,8, Anh T. Dinh1, Gregory Stephanopoulos9, Scott R. Manalis1,6, Michael B. Yaffe1,4,6, Eran R. Andrechek2, Sarah-Maria Fendt7,8, and Matthew G. Vander Heiden1,4,10,*

1 Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
2 Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
3 Harvard-MIT Health Sciences and Technology Division, Harvard Medical School, Boston, MA 02115, USA.
4 Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
5 College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA.
6 Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
7 Vesalius Research Center, VIB, 3000 Leuven, Belgium.
8 Department of Oncology, KU Leuven, 3000 Leuven, Belgium.
9 Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
10 Dana-Farber Cancer Institute, Boston, MA 02115, USA.

SUMMARY

Metabolic regulation influences cell proliferation. The influence of pyruvate kinase isoforms on tumor cells has been extensively studied, but whether PKM2 is required for normal cell
proliferation is unknown. We examine how PKM2-deletion affects proliferation and metabolism in non-transformed, non-immortalized PKM2-expressing primary cells. We find that deletion of PKM2 in primary cells results in PKM1 expression and proliferation arrest. PKM1 expression, rather than PKM2 loss, is responsible for this effect, and proliferation arrest cannot be explained by cell differentiation, senescence, death, changes in gene expression, or prevention of cell growth. Instead, PKM1 expression impairs nucleotide production and the ability to synthesize DNA and progress through the cell cycle. Nucleotide biosynthesis is limiting, as proliferation arrest is characterized by severe thymidine depletion, and supplying exogenous thymine rescues both nucleotide levels and cell proliferation. Thus, PKM1 expression promotes a metabolic state that is unable to support DNA synthesis.

INTRODUCTION

Proliferating cells metabolize glucose via aerobic glycolysis (Cairns et al., 2011; Hanahan and Weinberg, 2011; Koppenol et al., 2011). Aerobic glycolysis is characterized by increased glucose uptake and lactate excretion in the presence of oxygen, and has been proposed to promote the use of glucose for biosynthetic pathways necessary for cell growth and division (Lunt and Vander Heiden, 2011; Ward and Thompson, 2012); however, connections between aerobic glycolysis and specific pathway use are not well defined. The M2 isoform of the glycolytic enzyme pyruvate kinase (PKM2) has been associated with both aerobic glycolysis and anabolic metabolism in cancer cells (Anastasiou et al., 2012; Christofk et al., 2008a; Mazurek, 2011). PKM2 is also expressed in normal proliferating tissues (Mazurek, 2011); yet how pyruvate kinase isoform expression influences cell metabolism to support proliferation, and whether PKM2 is required for normal cell proliferation is unclear.

Pyruvate kinase converts phosphoenolpyruvate and ADP to pyruvate and ATP in glycolysis. Four isoforms of pyruvate kinase exist in mammals; each with varying kinetic and regulatory properties adapted for different tissue types. The PKLR gene uses two different promoters with alternative first exons to produce either the R isoform found in red blood cells, or the L isoform expressed in gluconeogenic tissues such as the liver and kidney (Domingo et al., 1992; Noguchi et al., 1987). The M1 and M2 isoforms are produced by mutually exclusive alternative mRNA splicing of the PKM gene. Including exon 9 in the transcript generates PKM1, while including exon 10 generates PKM2 (Noguchi et al., 1986; Yamada and Noguchi, 1999). PKM2 is found in early embryonic cells, normal proliferating cells, and tumor cells, as well as in white fat, lung, retina, and pancreatic islets (Imamura and Tanaka, 1982; Mazurek, 2011). PKM1 replaces PKM2 during development in tissues with high ATP production requirements including skeletal muscle, heart, and brain (Imamura et al., 1986; Mazurek, 2011). When cell proliferation is reactivated in non-proliferating tissues that do not express PKM2, such as during liver regeneration or carcinogenesis, PKM2 expression is observed (Hacker et al., 1998; Steinberg et al., 1999; Van Veelen et al., 1977; Yamada and Noguchi, 1995), implying PKM2 may be important for proliferation.

Mol Cell. Author manuscript; available in PMC 2016 January 08.
PKM1 and PKM2 exhibit different regulatory and catalytic properties. PKM1 is not allosterically regulated and assembles into stable homotetramers with high pyruvate kinase activity (Gui et al., 2013; Mazurek, 2011). In contrast, PKM2 can exist in an inactive non-tetrameric form or active tetrameric form, and these states can be regulated by phosphotyrosine signaling, redox status, acetylation, and metabolic intermediates including FBP, amino acids, SAICAR, and fatty acids (Anastasiou et al., 2011; Anastasiou et al., 2012; Chaneton et al., 2012; Christofk et al., 2008b; Keller et al., 2012; Lv et al., 2011). In addition, several non-glycolytic functions specific for PKM2 have been reported to be critical for cancer cell proliferation (Gao et al., 2012; Jiang et al., 2014; Keller et al., 2014; Luo et al., 2011; Yang et al., 2012a; Yang et al., 2011; Yang et al., 2012b), but it is unclear if any of these functions are important for proliferation of normal cells.

Here, we use non-immortalized primary cells from PKM2-conditional mice to study the role of PKM1 and PKM2 isoform expression in cell metabolism and proliferation. Deletion of PKM2 in these cells results in PKM1 expression and proliferation arrest. Expression of PKM1 in cells that co-express PKM2 also results in proliferation arrest, suggesting that expression of PKM1, rather than loss of PKM2, is responsible for this phenotype. Proliferation arrest is not associated with cell differentiation, senescence, changes in gene expression, or death; instead, PKM1 expression results in decreased flux to select biosynthetic pathways with nucleotide synthesis being a critical pathway that is limiting for cell proliferation. Proliferation arrest can be rescued by exogenous pyrimidine or purine base supplementation. These data argue that PKM1 expression suppresses nucleotide biosynthesis, and that PKM2 expression supports flux into metabolic pathways to support DNA synthesis.

RESULTS

PKM1 expression causes proliferation arrest of primary embryonic fibroblasts

To study the role of PKM2 in cell proliferation, we derived embryonic fibroblasts (MEFs) from mice where LoxP sites flank PKM2-specific exon 10 (PKM2^fl/fl) and harbor an inducible Cre recombinase allele (Cre-ER) (Israelsen et al., 2013). Deletion of exon 10 disrupts the ability of cells to produce PKM2 or any truncated protein product with PKM2 activity, but does not prevent production of PKM1 (Israelsen et al., 2013). When Cre recombinase remains inactive, PKM2 is expressed in PKM2^fl/fl Cre-ER cells (Figure 1A), as reported for wildtype MEFs (Anastasiou et al., 2011). Addition of 4-hydroxytamoxifen (4-OHT) activates Cre recombinase, leading to loss of PKM2 protein and PKM1 expression (Figure 1A). PKM1 expression is observed one day after 4-OHT treatment; however, residual PKM2 can be detected for up to 4 days following 4-OHT treatment, presumably due to the half-life of PK protein being as long as 104 hours (Illg and Pette, 1979; Yee et al., 2010).

Similar to wildtype MEFs, primary PKM2^fl/fl Cre-ER MEFs proliferate rapidly in culture for multiple passages (Figure 1B). When treated with 4-OHT, these MEFs exhibit a marked decrease in proliferation (Figure 1B). A similar proliferation arrest was observed in multiple lines, each independently derived from different PKM2^fl/fl Cre-ER mice (Figure S1A). To ensure that 4-OHT treatment itself is not affecting PK isoform expression or cell
proliferation, we generated MEFs from PKM2^fl/fl mice that do not harbor a Cre-ER allele. These Cre-negative PKM2^fl/fl MEFs express PKM2 (Figure S1B) and proliferate at a similar rate regardless of 4-OHT treatment (Figure 1C).

To determine whether expression of PKM1 or loss of PKM2 is responsible for cell proliferation arrest, we derived MEFs from PKM2^fl/+ Cre-ER mice. Without 4-OHT treatment, these MEFs express only PKM2 (Figure 1D) and proliferate for several passages (Figure 1E). 4-OHT treatment of PKM2^fl/+ Cre-ER MEFs causes deletion of the PKM2 conditional allele and results in expression of PKM1 with continued PKM2 expression from the wildtype allele (Figure 1D). As observed in PKM2^fl/fl Cre-ER MEFs, 4-OHT addition caused a similar proliferation arrest in PKM2^fl/+ Cre-ER MEFs despite retention of PKM2 expression (Figure 1E). Cre expression alone can also slow proliferation without affecting pyruvate kinase isoform expression, but does not increase γ-H2AX levels and has less impact on cell proliferation than Cre-mediated PKM2 deletion (Figure S1C-S1E). To test whether the increase in pyruvate kinase activity associated with gain of PKM1 expression contributes to a block in proliferation, we monitored proliferation of wildtype MEFs following addition of the small molecule PKM2 activator TEPP-46 (Anastasiou et al., 2012). TEPP-46 decreases proliferation (Figure 1F), and exogenous PKM1 cDNA expression also reduces proliferation of wildtype MEFs (Figure S1F). Together, these data suggest proliferation is suppressed in PKM2^Δ/Δ MEFs due to gain of PKM1 rather than loss of PKM2.

Deletion of PKM2 does not induce cell death, senescence, or differentiation

Potential explanations for why PKM1 expression suppresses proliferation include an increase in cell death, cell senescence, and/or differentiation to a non-proliferating cell population. To begin to examine these possibilities in cells with and without PKM2 deletion, we quantified the percentage of viable cells by propidium iodide exclusion and the amount of cell death by lactate dehydrogenase release (Decker and Lohmann-Matthes, 1988; Nicoletti et al., 1991). No difference in cell viability or LDH release was found between PKM2^fl/fl and PKM2^Δ/Δ MEFs as late as 9 days after vehicle or 4-OHT treatment despite a large difference in cell number (Figures 2A and S2A). Consistent with these results, >90% of MEFs from both populations exclude trypan blue at this time point. These data suggest PKM1 expression following PKM2-deletion inhibits cell proliferation without increasing cell death.

Primary MEFs undergo senescence upon serial passage in culture that involves entry into a state of irreversible proliferation arrest (Campisi, 2011; Kuilman et al., 2010; Odell et al., 2010). Therefore, it was possible that PKM1 expression induces early senescence. One marker of senescent cells is acid-stable β-galactosidase activity (Castro et al., 2003; Dimri et al., 1995; van der Loo et al., 1998). No difference in acid-stable β-galactosidase activity was found between early passage proliferating PKM2^fl/fl and proliferation-arrested PKM2^Δ/Δ MEFs as late as 9 days after treatment with vehicle or 4-OHT (Figure 2B, upper panels). Late passage PKM2^fl/fl MEFs senesce as evidenced by proliferation arrest, morphology change, and acid-stable β-galactosidase staining. Surprisingly, despite no proliferation for days, PKM2^Δ/Δ MEFs stain positive for acid-stable β-galactosidase activity at the same time...
PKM2Δ/Δ MEFs senesce due to high passage number (Figure 2B, lower panels). These data suggest induction of the senescence program observed with serial primary cell passage does not correlate with proliferation arrest of PKM2Δ/Δ cells.

Primary MEFs can differentiate under specific culture conditions. For instance, MEFs can differentiate along an adipocyte-like lineage and accumulate neutral lipids (Green and Kehinde, 1974; Russell and Ho, 1976). To determine if PKM2Δ/Δ MEFs accumulate lipids, we stained them with Oil Red O and found no evidence of lipid accumulation (Figure S2B). To further test whether PKM2 deletion causes differentiation, and determine whether proliferation arrest is observed in PKM2Δ/Δ primary cells other than MEFs, we isolated myoblasts from PKM2fl/fl Cre-ER mice. Myoblasts can be induced to differentiate into myotubes with characteristic morphology (Wakelam, 1985), and are a well-studied differentiation model (Abmayr and Pavlath, 2012). Similar to the phenotype observed in PKM2fl/fl Cre-ER MEFs, treatment of PKM2fl/fl Cre-ER myoblasts with 4-OHT results in PKM2 deletion and PKM1 expression (Figure S2C) with proliferation arrest (Figure 2C). Similar to immortalized C2C12 myoblasts (Clower et al., 2010), we confirmed primary PKM2fl/fl Cre-ER myoblasts are capable of differentiation under conditions that favor myotube formation (Figure 2D) and express PKM1 upon differentiation (Figure S2D). However, PKM2 deletion in myoblasts does not cause differentiation into myotubes (Figure 2D).

PKM2Δ/Δ MEFs do not incorporate EdU

Lack of PKM2Δ/Δ MEF proliferation implies an inability to proceed through the cell cycle. To investigate whether PKM2Δ/Δ MEFs replicate DNA, they were incubated with EdU, a thymidine analog incorporated into DNA during S phase of the cell cycle. Consistent with lack of DNA synthesis, PKM2Δ/Δ MEFs exhibit decreased EdU incorporation compared to PKM2fl/fl MEFs (Figure 2E). Cells deprived of nutrients classically arrest in G1 phase of the cell cycle (Bohnsack and Hirschi, 2004). To determine whether PKM2Δ/Δ MEFs were arrested in G1, we analyzed DNA content by flow cytometry. Both the G1 and G2/M phase DNA content peaks widened in a pattern that is most consistent with more cells in S phase (Figure 2F). Dual staining of EdU incorporation and DNA content is also consistent with an inability to progress through the cell cycle, as less EdU incorporation is observed at all DNA contents, with much of the population having a DNA content between 2N and 4N despite no EdU uptake (Figure 2G). To compare PKM2Δ/Δ MEF arrest to cell cycle arrest induced by nutrient withdrawal, the DNA content of wildtype MEFs was assessed following removal of the essential amino acid lysine. Lysine withdrawal also causes proliferation arrest (Figure S2E); however, unlike PKM2Δ/Δ MEFs, these cells accumulate in G1 (Figures S2FM). Taken together, these results argue that lack of proliferation caused by PKM1 expression is distinct from G1 arrest caused by nutrient deprivation. Instead, these data are more consistent with a failure of PKM2Δ/Δ MEFs to incorporate nucleotides into DNA.

Despite proliferation arrest, PKM2Δ/Δ MEFs continue to uptake nutrients and grow

Cell division can depend on cell size in eukaryotic cells (Johnston et al., 1977; Montagne et al., 1999). A possible explanation for why cells stop proliferating is that changes in metabolism lead to insufficient metabolic precursors to support cell growth, and sufficient
size to complete a cell cycle is not achieved. To determine whether proliferation arrest of PKM2Δ/Δ MEFs is associated with decreased aerobic glycolysis, we measured consumption of glucose as well as lactate excretion. Surprisingly, despite proliferation arrest, PKM2Δ/Δ MEFs have higher glucose uptake and lactate excretion rates than PKM2fl/fl MEFs (Figures 3A and 3B). Overall glucose oxidation is also increased in PKM2Δ/Δ MEFs: measurement of 14CO2 production from uniformly radiolabeled glucose revealed ~40% more 14CO2 production from glucose over 24-hours in PKM2Δ/Δ MEFs than in PKM2fl/fl MEFs (Figure 3C). In addition, assessment of cell volume showed that PKM2Δ/Δ cells are ~1.7 times larger than proliferating PKM2fl/fl cells (Figure 3D). In fact, the mean volume of arrested PKM2Δ/Δ cells was larger than 85% of cycling PKM2fl/fl cells, suggesting PKM2Δ/Δ MEFs grow to a large size despite proliferation arrest. The cell volume increase is accompanied by increased protein amount, with total protein content of PKM2Δ/Δ MEFs ~1.9 times greater than total protein content in cycling PKM2fl/fl MEFs (Figure 3E). PKM2Δ/Δ MEFs also contain higher levels of fatty acids, with pool sizes of palmitate, oleate, and stearate > 2-fold higher in PKM2Δ/Δ MEFs compared to PKM2fl/fl MEFs (Figure S3). To confirm that increases in cell volume, total protein, and select fatty acids are accompanied by an increase in cell mass, we utilized a suspended microchannel resonator (Burg et al., 2007) to determine dry mass at the single cell level (Feijo Delgado et al., 2013). The dry mass of PKM2Δ/Δ cells is greater than the dry mass of PKM2fl/fl cells (783 pg for PKM2Δ/Δ MEFs compared to 455 pg for PKM2fl/fl MEFs; Figure 3F). One million PKM2Δ/Δ MEFs also weighed 24 ± 4% more than the same number of PKM2fl/fl MEFs when dried on filter paper and weighed using an analytical balance. Together, these data suggest that despite proliferation arrest, PKM2Δ/Δ MEFs continue to metabolize glucose at high rates and grow to a larger size than proliferating PKM2fl/fl MEFs.

PKM2 supports specific aspects of anabolic metabolism

Despite growing to a larger size, specific metabolite(s) or metabolic flux limitations could account for the inability of PKM2Δ/Δ cells to proliferate. To explore this hypothesis, we used isotope labeled nutrients and mass spectrometry-based metabolite analysis to probe metabolism of PKM2Δ/Δ MEFs in comparison to PKM2fl/fl MEFs. Analysis of intracellular metabolites after culture in the presence of uniformly labeled 13C-glucose ([U-13C6]glucose) and glutamine ([U-13C5]glutamine) reveals that PKM2Δ/Δ MEFs have decreased labeling from glucose and glutamine in some biosynthetic precursors including the nucleotide uridine monophosphate (UMP) and the fatty acid palmitate (Figures 4 and S4). Moreover, 13C-glucose incorporation into serine and glycine were also decreased in PKM2Δ/Δ MEFs. In contrast, a higher percentage of TCA cycle intermediates are labeled from [U-13C6]glucose in PKM2Δ/Δ MEFs (Figure 4A), suggesting increased glucose contribution and/or decreased glutamine contribution to the TCA cycle. Labeling studies using [U-13C5]glutamine show that PKM2Δ/Δ MEFs have lower glutamine contribution to TCA cycle intermediates (Figure 4B), implying that proliferation-arrested PKM2Δ/Δ MEFs rely more on glucose than glutamine to support the TCA cycle. These results confirm that PKM1 expression leads to increased glucose catabolism, and support a model where PKM1 expression curtails the use of glucose and glutamine for production of some biosynthetic precursors.
Glucose is the major precursor for de novo palmitate synthesis in both PKM2Δ/Δ and PKM2fl/fl MEFs, despite less palmitate synthesized from both glucose and glutamine in PKM2Δ/Δ MEFs relative to PKM2fl/fl MEFs (Figure S4). The rate of total fatty acid synthesis decreased by 22% with PKM2 deletion in these cells, consistent with decreased lipid synthesis observed previously upon PKM1 expression (Anastasiou et al., 2012). A fraction of palmitate is produced from glutamine in PKM2fl/fl and PKM2Δ/Δ MEFs, with a labeling pattern consistent with synthesis by reductive metabolism in both cases (Fendt et al., 2013b; Metallo et al., 2012). Although PKM2Δ/Δ MEFs exhibit decreased fatty acid synthesis, they contain higher levels of intracellular fatty acids compared to their PKM2fl/fl counterparts (Figure S3). To accumulate high levels of fatty acids despite a decrease in biosynthesis, it is likely that PKM2Δ/Δ MEFs import exogenous fatty acids. Lipid scavenging from the media has been observed previously in cancer cells (Kamphorst et al., 2013).

Proliferation of PKM2Δ/Δ MEFs is limited by nucleotides

Pool sizes of intracellular metabolites were measured to assess whether specific metabolites are limiting for cell proliferation in PKM2Δ/Δ MEFs. While levels of most metabolites in PKM2Δ/Δ cells were unchanged or increased relative to PKM2fl/fl cells (Figure S5A), nucleotide levels were lower, and the most depleted intracellular metabolite measured in PKM2Δ/Δ MEFs is thymidine monophosphate (dTMP; Figure 5A). This is consistent with decreased glucose and glutamine contribution to UMP observed in PKM2Δ/Δ MEFs (Figure 4), as UMP is a biosynthetic precursor of dTMP.

To explore the possibility that de novo nucleotide synthesis is decreased in PKM2Δ/Δ MEFs, we performed dynamic labeling experiments and flux modeling. Dynamic labeling with uniformly labeled 13C-glucose and 13C-glutamine confirms decreased glucose and glutamine flux to UMP in PKM2Δ/Δ MEFs (Figure 5B). The same labeling studies also suggest flux of glucose carbon into IMP and AMP is decreased slightly in PKM2Δ/Δ MEFs, while glutamine labeling is not informative as this amino acid does not contribute carbons to de novo purine synthesis. Analysis of metabolic fluxes from steady state labeling data (Antoniewicz et al., 2007; Young et al., 2008) support the notion that de novo nucleotide synthesis, glutamine to glutamate conversion, and 3-phosphoglycerate (3PG) to serine flux are decreased in PKM2Δ/Δ MEFs (Figure 5C). Decreased 3PG to serine flux is consistent with previous reports of PKM2 expression shunting carbon into serine biosynthesis (Chaneton et al., 2012); however, despite decreased serine synthesis, serine levels remained unchanged (Figure S5A). To determine if serine metabolism could be limiting for de novo nucleotide biosynthesis, we modeled fluxes for serine-glycine-one carbon metabolism based on 13C-glucose incorporation into serine and glycine as well as serine and glycine uptake rates from the media (Figure S5B, Supplementary Material). While decreased 3PG conversion to serine was suggested by the model in PKM2Δ/Δ MEFs, serine uptake appeared sufficient to compensate for any decrease in de novo serine synthesis, suggesting that a lack of serine availability alone is unlikely to account for impaired nucleotide synthesis.
Proliferation arrest of PKM2Δ/Δ MEFs is not caused by gene expression changes

We performed genome-scale gene expression analysis to explore whether changes in gene expression cause PKM2Δ/Δ MEFs proliferation arrest. Analysis of microarray data for PKM2Δ/Δ and PKM2fl/fl cells obtained from two different independently derived MEF lines revealed no correlation between gene expression changes and pyruvate kinase isoform expression (Figure 6A). In fact, unsupervised hierarchical clustering results in clustering by the embryo from which the MEFs were generated rather than by pyruvate kinase isoform expression. As an additional approach, we used fold change analysis to compare gene expression differences between PKM2Δ/Δ and PKM2fl/fl MEFs. This analysis revealed a small number of genes that show differences according to pyruvate kinase isoform expression, and these results were confirmed by RT-PCR (Figure S6A); however, none of the genes are directly related to metabolism or cell cycle control.

Since metabolic analysis of PKM2Δ/Δ and PKM2fl/fl MEFs revealed deficiencies in nucleotide metabolism, we re-analyzed the gene expression data examining only nucleotide metabolism genes (Figure 6B). Again, unsupervised hierarchical clustering does not show a correlation between expression changes and pyruvate kinase isoform expression, and most genes show minimal change in expression levels. To confirm these results, we examined relative protein and gene expression levels of several key nucleotide metabolism genes by Western blotting and RT-PCR (Figures S6B and S6C). None showed differences in expression between PKM2Δ/Δ and PKM2fl/fl MEFs. These results argue that changes in gene expression do not account for either impaired nucleotide synthesis or proliferation arrest of PKM2Δ/Δ MEFs.

PKM2Δ/Δ MEFs cannot complete DNA synthesis

To determine whether de novo pyrimidine production is limiting for proliferation of PKM2Δ/Δ MEFs, we attempted to prevent proliferation arrest by supplementing the media with thymine at the time of 4-OHT addition. Thymine supplementation prevented proliferation arrest of PKM2Δ/Δ MEFs (Figure 7A). Thymine supplementation also prevents depletion of intracellular dTMP and dTTP levels, as well as levels of other nucleotides (Figure 5A) and some other depleted metabolites (Figure S5A), but has no effect on proliferation of PKM2fl/fl MEFs or Cre expressing MEFs (Figures S7A and S1C). The ability of thymine supplementation to sustain proliferation of PKM2Δ/Δ MEFs is maintained for up to 10 days, and does not increase PKM2Δ/Δ MEF cell number by inducing a burst of proliferation following addition of thymine. The pyrimidines cytosine and uracil and purines inosine, guanine, and adenine also partially prevent proliferation arrest of PKM2Δ/Δ MEFs, but to a lesser extent (Figure 7A). To confirm that changes in serine are not limiting for cell proliferation, we supplemented PKM2Δ/Δ MEFs with serine; however, neither serine nor other substrates used in nucleotide synthesis rescued proliferation (Figure 7A).

To determine whether thymine supplementation can restore proliferation of arrested PKM2Δ/Δ MEFs, we added thymine to the media 5 days after 4-OHT addition, a time point when PKM2-deleted cells have stopped proliferating (Figure 1B). Thymine addition restores proliferation that is sustained for several days; however, the cells senesce around day 10 and thus undergo fewer population doublings (Figure S7B). Even when media is changed every
3 days without replating, no spontaneous recovery has been observed in \(PKM2^{ΔΔ} \) MEFs despite following cultures for up to 18 days after proliferation arrest.

To determine whether DNA synthesis might be limited by nucleotide pools in \(PKM2^{ΔΔ} \) MEFs, we performed DNA labeling studies to directly visualize nucleotide incorporation into DNA over time (Figure 7B). While \(PKM2^{fl/fl} \) MEFs incorporate both 5-Chloro-2'-deoxyuridine (CldU) and 5-Iodo-2'-deoxyuridine (IdU) to produce long DNA strands over a 20 minute period, \(PKM2^{ΔΔ} \) MEFs are only able to incorporate CldU and IdU for short bursts, and strands with both CldU and IdU are rarely observed (Figures 7B and 7C). These data suggest at least some \(PKM2^{ΔΔ} \) MEFs are in S phase because limited CldU and IdU incorporation into DNA is observed. The data also argue that \(PKM2^{ΔΔ} \) MEFs are unable to sustain DNA synthesis, and are consistent with nucleotide depletion causing proliferation arrest. Together, our experiments argue PKM1 expression leads to low nucleotide levels and an inability to replicate DNA.

DISCUSSION

While most proliferating cells express PKM2, the exact role of PKM2 in cell proliferation remains controversial. Unlike constitutively active PKM1, PKM2 can be regulated to assume either a low or high activity state, and the inactive state of PKM2 is favored in proliferating tumor cells (Israelsen et al., 2013). It has been proposed that less active PKM2 allows buildup of upstream glycolytic metabolites that can feed into biosynthetic pathways, with the subsequent ability to use these metabolites for anabolic metabolism (Christofk et al., 2008b; Eigenbrodt and Glossmann, 1980). Consistent with this idea, our data show that expression of constitutively active PKM1 results in decreased *de novo* nucleotide biosynthesis. However, contrary to this hypothesis, PKM1 expression did not deplete upstream glycolytic intermediates or impair all anabolic metabolism. Instead, pools of upstream glycolytic intermediates and most intracellular metabolites were unchanged, and the cells continued to accumulate protein and lipids to grow to a larger size. This suggests protein and nucleotide synthesis can be uncoupled in these cells. This is in contrast to findings in some cancer cells where coordinate regulation of protein synthesis and nucleotide synthesis is observed (Cunningham et al., 2014).

PKM1 expression led to severe thymidine depletion and proliferation arrest that is rescued by thymine supplementation. Although all nucleotides were depleted, depletion of pyrimidines may be most severe because they depend on both glucose and glutamine as carbon sources, while purines only depend on glucose. Thymine supplementation was most effective; however, supplementation of other nucleotide bases could also partially prevent proliferation arrest. Nucleotide levels in cells are tightly regulated with complex allosteric control of synthesis maintaining balanced pools in cells such that changes in one nucleotide pool can impact the availability of other nucleotides (Cohen et al., 1983; Reichard, 1988). Although pyrimidines and purines cannot be interconverted, changes in pyrimidine production impacts both purine and pyrimidine levels (Reaves et al., 2013). Methotrexate impairs thymidine synthesis and depletes both purines and pyrimidines in tumor cells (Hryniuk, 1975; Hryniuk et al., 1975; Tattersall et al., 1974). Thymidine supplementation
alone rescues methotrexate toxicity in some cancer cells, while others require both purine and pyrimidine supplementation (Harrap et al., 1977).

Thymidine depletion is the basis for anti-proliferative therapies that range from antibiotics (Hawser et al., 2006; Kwon et al., 2010) to cancer chemotherapy (Gangjee et al., 2007; Witherspoon et al., 2013). The success of drugs that target thymidine pools highlights the importance of generating this nucleotide in proliferating cells. Nucleotide depletion can trigger cell cycle arrest in human neuroblastoma cell lines (Messina et al., 2004) and T lymphocytes (Laliberté et al., 1998). Similar to our findings, proliferation arrest induced by nucleotide depletion in T lymphocytes could be reversed with nucleotide supplementation (Turka et al., 1991). Accumulation of cells in S phase and a slow DNA replication rate has also been observed in cells treated with hydroxyurea, a ribonucleotide reductase inhibitor that lowers deoxynucleotide pools (Anglana et al., 2003). Additional studies have shown low nucleotides can impair cancer progression (Cunningham et al., 2014) or cause oncogene-induced senescence (Aird et al., 2013), suggesting nucleotide levels can limit proliferation in other contexts.

Some mammalian cells can continue DNA synthesis with imbalanced deoxyribonucleoside pools (Meuth, 1989); however, nucleotide insufficiency can also result in DNA polymerase stalling, collapsed replication forks, and activation of the DNA damage response (Bester et al., 2011). Activation of the DNA damage response is one mechanism that could account for S-phase cell cycle arrest in PKM2ΔΔ cells, although increased γ-H2AX staining was not observed. The lack of sustained DNA replication in PKM2ΔΔ cells suggests they enter S-phase with insufficient nucleotides to complete this phase of the cell cycle. It has been suggested that one function of the G1-S cell size check point is to ensure sufficient nutrients are available to complete S-phase (Foster et al., 2010), while others have argued that mammalian cells only have sufficient precursor stores to sustain DNA replication for a few minutes and therefore must continuously replenish deoxynucleotide pools to replicate the genome (Reichard, 1988). These data argue that regulation of pyruvate kinase isoform expression can impact the ability of cells to generate nucleotides and progress through S-phase.

To avoid a high mutation rate, cells may decrease oxidative metabolism during S-phase to protect the genome from DNA damage (Tu et al., 2005). PKM2 expression can favor the use of aerobic glycolysis (Christofk et al., 2008a); however, apart from protecting the genome by limiting oxidative phosphorylation, these data imply that aerobic glycolysis may also be important for supporting nucleotide synthesis to complete S-phase. Supporting nucleotide production may be another mechanism by which aerobic glycolysis keeps the mutation rate low by preventing collapsed replication forks caused by insufficient nucleotides.

Serine activates PKM2 and decreases new serine synthesis (Chaneton et al., 2012). Increased pyruvate kinase activity from PKM1 expression decreases 3PG to serine flux; however, serine levels are not affected in these cells despite decreased serine production. In fact, serine levels are maintained despite increased protein and cell mass in PKM2ΔΔ relative to PKM2fl/fl MEFs.

* Mol Cell. Author manuscript; available in PMC 2016 January 08.*
Non-metabolic functions of PKM2 have also been reported (Gao et al., 2012; Keller et al., 2014; Luo et al., 2011; Yang et al., 2012a; Yang et al., 2011; Yang et al., 2012b), including a role for PKM2 in regulating mitosis (Jiang et al., 2014). However, the failure of most \(PKM2^{\Delta/\Delta} \) MEFs to arrest in G2/M, and the ability to rescue proliferation with thymine supplementation both argue defects in chromosome segregation are not a major cause of proliferation arrest in these cells. Because most non-metabolic PKM2 functions are proposed to alter gene expression, the observation that loss of PKM2 causes minimal gene expression changes suggests that these PKM2 activities are less active in primary MEFs.

The inability of \(PKM2^{\Delta/\Delta} \) MEFs to sustain DNA synthesis is consistent with a model where a switch from PKM2 to PKM1 expression leads to low deoxynucleotide levels, an inability to replicate DNA, and decreased proliferation without affecting cell mass accumulation. How pyruvate kinase activity regulates nucleotide biosynthesis remains unknown. PKM2 can influence ribose production via the oxidative pentose phosphate pathway in cancer cells (Anastasiou et al., 2011), but altered ribose production was not observed in \(PKM2^{\Delta/\Delta} \) MEFs. Regardless of how pyruvate kinase influences nucleotide synthesis, these findings support the notion that independent of nutrient uptake, how nutrients are metabolized determines whether cells engage in proliferation.

EXPERIMENTAL PROCEDURES

All mouse studies were performed in accordance with institutional guidelines and approved by the MIT Committee on Animal Care.

Isolation and culture of primary mouse embryonic fibroblasts

Primary mouse embryonic fibroblasts (MEFs) were isolated and cultured using published methods (Springer et al., 2001). Embryos were isolated at E11.5 – E14.5 of gestation, and each embryo processed separately. MEFs were cultured in MEF medium (Dulbecco’s Modified Eagle’s Medium with 10% heat inactivated FBS, 1% streptomycin/penicillin, 1 mM glutamine, and 0.1 mM 2-mercaptoethanol) and plated at a density of \(5 \times 10^6 \) cells per 10 cm plate. Cells were split before reaching confluence and replated at 750,000 cells per 10 cm plate. 1 μM 4-hydroxytamoxifen in ethanol was used to induce recombination of \(PKM2^{\text{flu}} \) alleles. Cells starved of lysine were incubated in lysine-free DMEM and doubling time analyzed over 10 days.

Cell proliferation analysis

750,000 cells were seeded in triplicate in 10 cm plates, and cell counts obtained using a Cellometer Auto T4 Cell Counter (Nexcelom). Cells were replated at 70% confluence, counted, and reseeded at a density of 750,000 per 10 cm plate. Population doubling (PD) was calculated using the following formula:

\[
P D = \frac{\log_{10} \text{number of cells counted}}{\log_{10} \text{number of cells seeded}} + \text{previous PD}.
\]
When used, all metabolite supplements were added to MEF medium at a concentration of 250 μM.

Metabolite uptake and excretion

Conditioned medium was sampled after 72 h. Levels of glucose and lactate were measured using YSI 7100 Select Biochemistry Analyzer. The following equation was used to calculate metabolite consumption/excretion per 10^6 cells per hour (α):

$$\alpha = \frac{\text{metabolite}_{\text{initial}} - \text{metabolite}_{\text{final}}}{X_{\text{initial}} \cdot \mu \Delta t}$$

where

$$\mu = \text{specific growth rate} = \frac{1}{t} \cdot \ln \frac{X_{\text{final}}}{X_{\text{initial}}}$$

and X is cell number and t is time in hours. For μ of 0 (specific growth rate of 0), α was calculated using the following equation:

$$\alpha = \frac{\text{metabolite}_{\text{initial}} - \text{metabolite}_{\text{final}}}{X \cdot \Delta t}.$$

Metabolite extraction and analysis

For metabolite analysis using gas chromatography/mass spectrometry, cells were cultured for ~72 h in glucose- and glutamine-free DMEM-based MEF media with dialyzed FBS and the appropriate tracer added. [U-13C$_6$]glucose, [U-13C$_5$]glutamine, and [5-13C]glutamine were all from Cambridge Isotopes Laboratories, Inc.

Cell cycle analysis

Cells were fixed in ice cold ethanol at 4°C overnight, washed twice in PBS with 1% BSA, treated with RNase, and resuspended in propidium iodide buffer to a final concentration of 50 μg·ml$^{-1}$. Cells were analyzed on a Becton Dickinson FACScan flow cytometer. To assay for new DNA synthesis, the Click-iT EdU Alexa Fluor 488 kit was used with 3 hour exposure of cells to 10 μM EdU (Invitrogen C35002), and imaged on a Nikon Eclipse TE2000-U microscope with a 4 second exposure time and analyzed using the ImageJ software. Cells were dual stained for DNA content and new DNA synthesis with the Click-iT EdU Alexa Fluor 488 Kit and FxCycle Violet Stain (Life Technologies F-10347), respectively, and analyzed on a BD FACSCount using FACS Diva software. Viability was assessed by propidium iodide dye exclusion using a BD FACScan flow cytometer.

Measurement of cell mass and volume

Dry mass of single cells was measured as previously described (Feijo Delgado et al., 2013). Briefly, cells were resuspended in 1x PBS and loaded into a 15x20 μm cross-section suspended microchannel resonator. The buoyant mass of each cell was measured first in 1x
PBS and then in 1x D2O-PBS. Each experiment was conducted for approximately 1.5 h at room temperature. For measurement of cell dry weight from batch culture, 10^6 cells were captured onto membrane filters, dried at 37°C for several days and weighed using an analytical balance. Weights of control membrane filters loaded only with PBS before drying was subtracted to obtain the weight of 10^6 cells. Cell volumes were measured using a Coulter counter.

DNA strand labeling

Cells were incubated in medium containing 100 μM CldU (Sigma Aldrich C6891) for 20 min, washed with PBS, and then incubated in medium containing 250 μM IdU (Sigma Aldrich I7125) for 20 min. Following trypsinization, labeled cells were resuspended in PBS with tenfold excess of unlabeled cells and 2.5 μL were transferred to a glass slide with 7.5 μL of spreading buffer (200 mM Tris-HCl pH 7.5, 50 mM EDTA, .5% SDS). Slides were dried and fixed in cold 3:1 methanol:acetic acid for 2 min. Following a 30 min treatment with 2.5 N HCl to denature the DNA, slides were washed with PBS and blocked at 37 °C with PBST + 2% BSA. The samples were then incubated at 37 °C for 1 hr in PBST + 1% BSA containing primary antibodies to CldU (AbD Serotec OBT0030) and IdU (BD 347580), washed with PBST, and incubated at 37 °C for 30 min in PBST + 1% BSA containing secondary antibodies conjugated to Cy3 (Jackson Immunochemicals 712-165-153) and Alexa Fluor 488 (Jackson Immunochemicals 715-545-151) with minimal cross-reactivity to mouse and rat IgG, respectively. Samples were imaged using the DeltaVision Elite imaging system (Applied Precision) and microscope (model IX-71; Olympus) with a 100x objective lens, and the CoolSNAP HQ2 camera (Photometrics).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

This research was supported by the Department of Defense CDMRP Visionary Postdoctoral Award under award number (W81XWH-12-1-0466) to SYL. The work of SMF was supported by Marie Curie CIG, FWO-Odysseus II, Concern Foundation funding, and Bayer Healthcare Pharmaceuticals. This work was also supported by the Smith Family Foundation, the Burroughs Wellcome Fund, the Damon Runyon Cancer Research Foundation, the Stern family, the American Association for Cancer Research, and the National Cancer Institute including NIH 5P30CA145514 and R01CA168653. The authors thank Gavin Reid and Julia Busik for access to their laboratories; Stephanie Yazinski for experimental advice; Alice Chen, Amy Liu, Olivia Czajkowski, Jordan Honeysett, Michael Monterey, Jon Rennhack, Eric Poliner, Blair Bullard, Christophe Benning, and the Koch Institute Swanson Biotechnology Center for technical assistance; Craig Thomas and Matthew Boxer for providing PKM2 activators; Christian Metallo, Eric Bell, Ben Olenchock, Caroline Lewis, Brian Fiske, Katie Mattaini, Shawn Davidson, Jared Mayers, Amelia Yu, and Zach Johnson for thoughtful discussions and comments on the manuscript.

REFERENCES

Lunt et al.

Page 16

Figure 1. PKM2 deletion with PKM1 expression results in proliferation arrest
(A) The effect of 4-OHT treatment on pyruvate kinase isoform expression in PKM2^{fl/fl} Cre-ER MEFs was assessed by Western blot analysis. PKM2^{fl/fl} Cre-ER MEFs were treated with 4-OHT (PKM2^{Δ/Δ} Cre-ER) or vehicle (PKM2^{fl/fl} Cre-ER) for the indicated number of days. Muscle or H1299 cancer cell lysate were included as control samples that express only PKM1 or PKM2, respectively.
(B) Proliferation of PKM2^{fl/fl} Cre-ER MEFs following vehicle (PKM2^{fl/fl} Cre-ER) or 4-OHT (PKM2^{Δ/Δ} Cre-ER) treatment was assessed by counting cell numbers as shown.
(C) Proliferation of Cre negative PKM2^{fl/fl} MEFs treated with vehicle or 4-OHT was assessed by counting cell numbers as shown.
(D) Western blot analysis of MEFs generated from PKM2^{fl/+} Cre-ER mice. 4-OHT treatment results in PKM2^{fl/Δ} MEFs that express both PKM2 and PKM1 protein. Western blot analysis of 100 ng of recombinant PKM1 or PKM2 (rPKM1, rPKM2) are included as controls.
(E) Proliferation of PKM2^{fl/+} Cre-ER MEFs treated with vehicle (PKM2^{fl/+}) or with 4-OHT (PKM2^{Δ/+}) was assessed by counting cell numbers as shown.
(F) Proliferation of wildtype MEFs treated with vehicle or 1 μM of PKM2 activator TEPP-46 was assessed by counting cell numbers over time as shown.
All data are displayed as means ± SEM, n=3.
See also Figure S1.
Figure 2. PKM2Δ/Δ cells undergo cell cycle arrest

(A) Quantification of cell viability by propidium iodide staining after treatment of PKM2fl/fl MEFs with vehicle (PKM2fl/fl) or 4-OHT (PKM2Δ/Δ). Data are displayed as means ± SEM, n=3.

(B) Classical cell senescence was assayed by acid stable β-galactosidase activity. The top panels (labeled Early passage) assess acid stable β-galactosidase activity in PKM2fl/fl and PKM2Δ/Δ MEFs 9 days after vehicle or 4-OHT treatment, respectively. Bottom panels (labeled Late passage) assess acid stable β-galactosidase activity in PKM2fl/fl and PKM2Δ/Δ MEFs after 12 days in culture. The PKM2fl/fl MEFs had undergone proliferation arrest at this time point.

(C) Population doublings over 12 days for myoblasts isolated from three different PKM2fl/fl Cre-ER mice that were treated with vehicle (PKM2fl/fl) or 4-OHT (PKM2Δ/Δ). Data are displayed as means ± SEM, n=3.

(D) Images of myoblasts generated from PKM2fl/fl Cre-ER mice 9 days after treatment with vehicle (PKM2fl/fl) or 4-OHT (PKM2Δ/Δ) are shown. PKM2fl/fl myoblasts induced to differentiate by culture in low-serum for 9 days are also presented (right panel).

(E) EdU uptake of PKM2fl/fl and PKM2Δ/Δ MEFs was measured in PKM2fl/fl Cre-ER MEFs 7 days after vehicle or 4-OHT treatment. Data are displayed as means ± SEM, n=3.

(F) DNA content was assessed using propidium iodide staining and flow cytometry in PKM2fl/fl and PKM2Δ/Δ MEFs 7 days after PKM2fl/fl Cre-ER MEFs were treated with vehicle or 4-OHT.

(G) DNA content was assessed following dual staining with FxCycle Violet and EdU using flow cytometry in PKM2fl/fl and PKM2Δ/Δ MEFs 7 days after PKM2fl/fl Cre-ER MEFs were treated with vehicle or 4-OHT.

See also Figure S2.
Figure 3. *PKM2ΔΔ* cells remain metabolically active and are larger than *PKM2fl/fl* cells
(A) Glucose uptake rates; (B) lactate excretion rates; (C) the relative production of 14C-labeled CO2 from uniformly 14C-labeled glucose; (D) average cell volumes; (E) total protein content; and (F) single cell dry mass of *PKM2fl/fl* and *PKM2ΔΔ* MEFs 7 days after treatment of *PKM2fl/fl* MEFs with vehicle or 4-OHT. All data are displayed as means ± SEM, n=3 (*p < 0.0001).
See also Figure S3.
Figure 4. Pyruvate kinase isoform expression affects the use of specific metabolic pathways

(A) Labeling of intracellular metabolites with [U-\(^{13}\)C]glucose or (B) [U-\(^{13}\)C]glutamine was measured using mass spectrometry in PKM2\(^{fl/fl}\) and PKM2\(^{Δ/Δ}\) MEFs 7 days after PKM2\(^{fl/fl}\) Cre-ER MEFs were treated with vehicle or 4-OHT. Complete isotopomer distributions used to calculate these values are included in Table S1. The y-axis for all graphs in (A) is the calculated percent total glucose contribution (Fendt et al., 2013a).

See also Figure S4.
Figure 5. Nucleotide deficiency is limiting for proliferation of PKM2Δ/Δ MEFs

(A) Pool sizes of intracellular nucleotides in PKM2fl/fl and PKM2Δ/Δ MEFs were measured 7 days after PKM2fl/fl Cre-ER MEFs were treated with vehicle or 4-OHT. Pool sizes of intracellular nucleotides in PKM2Δ/Δ MEFs supplemented with 250 μM thymine were also measured 7 days after 4-OHT treatment. Data are displayed as means ± SEM, n=4.

(B) Dynamic labeling of intracellular metabolites with [U-13C]glucose and [U-13C]glutamine was measured using mass spectrometry in PKM2fl/fl and PKM2Δ/Δ MEFs 7 days after PKM2fl/fl Cre-ER MEFs were treated with vehicle or 4-OHT. The complete isotopomer distributions for all measurements are included in Table S2.

(C) Metabolic fluxes of central carbon metabolism in PKM2fl/fl and PKM2Δ/Δ MEFs. Fluxes were modeled based on dynamic and steady state [U-13C]glucose and [U-13C]glutamine labeling data. With the exception of NTP and lactate, biomass and extraction fluxes are not depicted (see supplement for complete flux model). Significant differences (>40%, based on 95% confidence interval) between fluxes of PKM2fl/fl and PKM2Δ/Δ MEFs are highlighted in grey.

See also Figure S5, Supplemental Experimental Procedures, and 13C-Metabolic flux analysis model.
Figure 6. Genome-scale gene expression analysis reveals no correlation between gene expression and proliferation arrest of \(PKM2^{\Delta/\Delta} \) cells

(A) Unsupervised hierarchical clustering of \(PKM2^{fl/fl} \) and \(PKM2^{\Delta/\Delta} \) MEF expression profiles. RNA was isolated from \(PKM2^{fl/fl} \) and \(PKM2^{\Delta/\Delta} \) MEFs 7 days after \(PKM2^{fl/fl} \) Cre-ER MEFs were treated with vehicle or 4-OHT. MEFs were generated from two independent \(PKM2^{fl/fl} \) Cre-ER MEFs. RNA was analyzed using an Affymetrix GeneChip Mouse Gene 1.0 ST array.

(B) Unsupervised hierarchical clustering of \(PKM2^{fl/fl} \) and \(PKM2^{\Delta/\Delta} \) MEF expression profiles for genes involved in nucleotide metabolism.

See also Figure S6.
Figure 7. Thymine supplementation restores proliferation of PKM2ΔΔ MEFs

(A) Population doublings over 10 days of PKM2fl/fl and PKM2ΔΔ MEFs were measured with or without the indicated metabolites supplemented in the media at a concentration of 250 μM. Data are displayed as means ± SEM, n=3. *Population doubling is statistically significant (p < 0.05) when compared to the population doubling of PKM2ΔΔ MEFs without any supplements.

(B) Three representative images of DNA strands incorporating CldU (red) and IdU (green) from PKM2fl/fl and PKM2ΔΔ MEFs five days after PKM2fl/fl Cre-ER MEFs were treated with vehicle or 4-OHT are shown; scale bar = 15 μm.

(C) Quantitation of the percentage of DNA strands incorporating both CldU and IdU is shown. For this analysis 237 strands from PKM2fl/fl MEFs and 54 strands from PKM2ΔΔ MEFs prepared as described in (B) were evaluated.

See also Figure S7.