Determination of the Ratio of b-quark fragmentation factors f_{s}/f_{d} in pp collisions at $s = 7$ TeV with the ATLAS detector

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

As Published	http://dx.doi.org/10.1103/PhysRevLett.115.262001
Publisher	American Physical Society
Version	Final published version
Accessed	Wed Feb 06 04:22:18 EST 2019
Citable Link	http://hdl.handle.net/1721.1/101618
Terms of Use	Creative Commons Attribution
Detailed Terms	http://creativecommons.org/licenses/by/3.0/
The production rate of B^0_d (B^0_b) mesons is a product of the $b\bar{b}$ cross section, the instantaneous luminosity and the probability that the \bar{b} quark is bound to an s (d) quark. The latter, denoted by the fragmentation fraction f_s (f_d), depends on the probability that in pQCD-inspired calculations [1,2], a soft gluon splits into $s\bar{s}$ ($d\bar{d}$) and that the overlap of the \bar{b} and s(d) wave functions is sufficiently large to produce a B^0_d (B^0_b) bound state. In a similar fashion, B^+ mesons, B^0, mesons, and b baryons are produced at the LHC with respective fragmentation fractions f_u, f_c, and f_{baryon}. The fragmentation fractions are about 40% each for u and d quarks, 10% for s quarks, at the percent level for c quarks, and \sim8% for baryon production satisfying the constraint $f_u + f_d + f_s + f_c + f_{\text{baryon}} = 1$. Precise knowledge of the fragmentation fractions is essential for measuring b-hadron cross sections and branching fractions at the LHC. In particular, for rare decays, such as the branching fraction measurement of $B^0 \rightarrow \mu^+\mu^-$ [3–5], a precise knowledge of f_s/f_d is important since it improves the sensitivity of searches for new physics processes beyond the standard model (SM). The fragmentation ratio f_s/f_d is a universal quantity that was measured by LEP experiments [6], CDF [7], and LHCb [8,9]. This Letter presents a measurement of f_s/f_d using $B^0 \rightarrow J/\psi\phi$ and $B^0_d \rightarrow J/\psi K^{0*}$ decays.

The ratio of fragmentation fractions f_s/f_d is extracted from the measured $B^0 \rightarrow J/\psi\phi$ and $B^0_d \rightarrow J/\psi K^{0*}$ signal yields, N_{B^0} and $N_{B^0_d}$. These are converted into B^0 and B^0_d meson yields after dividing by the branching fractions of the relevant decays and correcting for the relative efficiency \mathcal{R}_{eff} that is expressed as a product of acceptance and selection efficiency ratios for the two modes and is determined from Monte Carlo (MC) simulations:

$$\frac{f_s}{f_d} = \frac{N_{B^0_d} B(B^0_d \rightarrow J/\psi K^{0*}) B(K^{0*} \rightarrow K^+\pi^-) \mathcal{R}_{\text{eff}}}{N_{B^0} B(B^0 \rightarrow J/\psi\phi) B(\phi \rightarrow K^-K^0)},$$

where the J/ψ, ϕ, and K^{0*} are reconstructed in their $J/\psi \rightarrow \mu^+\mu^-$, $\phi \rightarrow K^+K^-$, and $K^{0*} \rightarrow K^+\pi^-$ final states [10], respectively. The data sample consists of pp collisions collected with the ATLAS detector at $\sqrt{s} = 7$ TeV corresponding to an integrated luminosity of 2.47 ± 0.04 fb$^{-1}$. The ATLAS multipurpose detector is described in detail in Ref. [11].

The PYTHIA 6 and 8 [12,13] MC generators with parameters tuned to reproduce ATLAS data [14] are used to simulate background and signal events, respectively. For the signal channels, the angular distributions are produced with the measured polarization parameters [15]. The detector response for the generated events is simulated with GEANT4 [16,17].

The $B^0 \rightarrow J/\psi\phi$ and $B^0_d \rightarrow J/\psi K^{0*}$ signal candidates consist of two muons and two hadrons originating from a common secondary vertex. The J/ψ candidates are selected from the dimuon trigger sample requiring two oppositely charged muon candidates, each having a transverse momentum of $p_T > 4$ GeV. Reconstructed muon candidates are categorized either as combined or segment-tagged muons. A combined muon consists of an inner detector (ID) track combined with a muon spectrometer (MS) track using tight matching criteria, while a segment-tagged muon requires an ID track and track segments in the MS that are not reconstructed as an MS track [11]. The two muons, of which at least one must be a combined muon, are fitted to originate from the same two-track vertex. The

Driven by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
vertex fit chi-square per degree of freedom (dof) is required to be $\chi^2/\text{dof} < 10$. To improve the sample purity, each muon track must have at least one hit in the pixel detector, more than five hits in the silicon strip detector and at least one hit in the transition radiation tracker that reduces the pseudorapidity coverage to $|\eta| < 2.0$ [18].

Since the dimuon mass resolution is different for muons reconstructed in the end caps ($1.05 < |\eta| < 2.5$) and for muons reconstructed in the barrel ($|\eta| < 1.05$), all accepted J/ψ candidates are divided into three classes: two barrel muons (BB), one end-cap and one barrel muon (EB), and two end-cap muons (EE). The parameters describing the dimuon mass distribution in the J/ψ signal region for the three pseudorapidity classes in data and in $B^0_d \rightarrow J/\psi \phi$ and $B^0_s \rightarrow J/\psi K^{*0}$ MC samples are extracted from maximum-likelihood fits. Signal events are selected requiring mass windows of $\pm 3\sigma$ around the J/ψ peak in data and simulations. For data, the selected signal regions are 2.991–3.197 GeV for BB, 2.955–3.235 GeV for EB, and 2.914–3.275 GeV for EE classes, while in simulations they are slightly smaller.

The B^0_s candidates are reconstructed from a J/ψ candidate plus two oppositely charged hadrons with a kaon mass hypothesis assigned. The dimuon mass is constrained to the J/ψ mass [15], and the J/ψ and two kaons have to originate from the same vertex. All combinations are accepted if $p_T(B^0_s) > 8$ GeV, $\chi^2/\text{dof} < 3$ for the vertex fit and the K^+K^- invariant mass lies in the range determined by ± 2 natural widths (Γ_ϕ) around the ϕ mass peak, $1011 < m_{K^+K^-} < 1028$ MeV. The $m_{K^+K^-}$ distribution is modeled with a Breit-Wigner line shape convolved with a Crystal Ball function [19]. The selected mass window retains 85% of signal events.

The B^0_d candidates are reconstructed in a similar way. Here, one track of the K^{*0} decay is assigned a kaon mass hypothesis and the other track a pion mass hypothesis. Since ATLAS has limited kaon-pion separation capability in the momentum range relevant for this analysis, both $K\pi$ mass assignment combinations are tested. That with mass closest to the nominal K^{*0} mass is chosen, yielding the correct $K\pi$ selection for 86% of all K^{*0} candidates. The probability density function (PDF) for the invariant mass of correctly selected $K\pi$ candidates is modeled with a relativistic Breit-Wigner line shape convolved with a Crystal Ball function, while that where the K and π are swapped is modeled with a Gaussian function. The decay $B^0_d \rightarrow J/\psi \phi$ produces a peaking background in $B^0_d \rightarrow J/\psi K^{*0}$ that appears in the low K^{*0} mass region. To remove this contribution, the selected K^{*0} region is constrained to one K^{*0} decay width around the K^{*0} mass peak, corresponding to $847 < m_{K\pi} < 942$ MeV for data. Since the K^{*0} line shape is narrower in the MC simulations than in data, the $K\pi$ mass selection needs to be adjusted in simulations to produce identical efficiencies in data and simulations. For the K^+K^- mass selection, a similar procedure is used.

The signal-to-background ratios for $B^0_s \rightarrow J/\psi \phi$ and $B^0_d \rightarrow J/\psi K^{*0}$ decays are optimized using three variables with high background suppression power: the χ^2/dof of the B vertex fit, the transverse decay length in the transverse plane, and the pointing angle α defined as the angle between the B meson transverse momentum and the ϕ direction. If more than one PV candidate exists, the one is selected for which the sum of squared transverse momenta of all tracks originating from the vertex, $\sum p_T^2$, yields the highest value. The χ^2/dof, L_{xy} and α selection criteria are optimized using simulated samples $B^0_s \rightarrow J/\psi \phi$ and $B^0_d \rightarrow J/\psi K^{*0}$ events for signal and data sidebands for background.

To produce similar p_T and η distributions in data and MC, data-driven weights are obtained by the following procedure. Sideband-subtracted $B^0_s \rightarrow J/\psi \phi$ ($B^0_d \rightarrow J/\psi K^{*0}$) p_T and η distributions from data are compared with corresponding distributions in simulation in the signal region, $5.32 < m_{J/\psi \phi} < 5.42$ ($5.21 < m_{J/\psi K^{*0}} < 5.35$) GeV. The upper and lower sidebands $5.09 < m_{J/\psi \phi} < 5.16$ GeV and $5.48 < m_{J/\psi \phi} < 5.53$ GeV are selected such that their summed yields represent the expected backgrounds in the signal region for the data. The weights are obtained by dividing the yield in each p_T and η bin in data by the corresponding yield of the MC sample using only events with odd event numbers. Thus, for each bin (i) and (j) of the p_T and η distributions, a weight is determined as a product of a p_T-dependent and η-dependent weights:

$$W_{ij}(p_T, \eta) = \frac{n^\text{data}(p_T) n^\text{data}(\eta)}{n^\text{MC}(p_T) n^\text{MC}(\eta)},$$

where $n^\text{data/MC}(p_T)$ is the normalized number of entries in the p_T bin i and $n^\text{data/MC}(\eta)$ is that in the η bin j. To obtain good agreement between data and simulation, the procedure is repeated twice. The two sets of weights are multiplied and are used to correct the p_T and η distributions of the MC sample with even event numbers. From the corrected MC samples, distributions for χ^2/dof, L_{xy}, and α are determined, which are in good agreement with those measured in the data. The correlation between p_T and η is small and is accounted for in the systematic error.

For both modes, the dominant background originates from a J/ψ produced at the PV plus two oppositely charged hadrons (direct J/ψ) [21]. Since the hadrons are not associated with any $B^0_s(B^0_d)$ decay, the $J/\psi K^+K^-(J/\psi K^+\pi^-)$ invariant-mass spectrum does not peak but decreases with mass. Another large background consists of two random low-momentum, oppositely
charged muons combined with two random charged hadrons. Here, the dimuon mass distribution does not peak at the \(J/\psi \) nor does the four-particle mass show any peaking structure. Inclusive decays \(B \rightarrow J/\psi X \), where \(X \) is a single hadron or a collection of hadrons, provide a source of background that is very similar to the signal. If \(X \) consists of exactly two charged-particle tracks (without any \(\pi^0 \)), the mode is topologically indistinguishable from the signal mode. Self-cross-feed, in which one or both hadrons from the \(\phi(K^0) \) decay are replaced with random hadrons, is negligible. In addition, peaking backgrounds from \(B^0_{s} \rightarrow J/\psi K^{0}\) and \(B^0_{s} \rightarrow J/\psi K^{+}\pi^{-}\) contribute to \(B^0_{s} \rightarrow J/\psi \phi \) while \(B^0_{d} \rightarrow J/\psi K^{+}\pi^{-} \) also contributes to \(B^0_{d} \rightarrow J/\psi K^{0}\).

To reduce these backgrounds, the \(\chi^2/\text{dof}, L_{xy} \) and \(\alpha \) selections are optimized for each mode separately by determining the maximum value of \(S/\sqrt{S+\tilde{B}} \) as a function of selected values for the observable to be optimized, where \(S \) represents the signal yield obtained from simulation and \(B \) is the background extracted from data sidebands. For the \(B^0_{s} (B^0_{d}) \) mode, the optimization yields \(\chi^2/\text{dof} < 2.4 (2.6), L_{xy} > 0.26 (0.30) \) mm, and \(\alpha < 0.14 (0.12) \) rad. In combination with the \(J/\psi \) mass requirement, the \(\chi^2/\text{dof} \) selection reduces the combinatorial background significantly, while the \(L_{xy} \) and \(\alpha \) selections remove most of the direct \(J/\psi \) background.

In the final sample, the signal yields \(N_{B^0_{s}} \) and \(N_{B^0_{d}} \) are extracted from unbinned extended maximum-likelihood fits to the \(J/\psi K^{+}\pi^{-} \) and \(J/\psi K^{0}\) invariant-mass spectra, respectively. The \(B^0_{s} \) signal PDF is modeled with three Gaussian functions with common mean that is determined from the fit, while widths and fractions are fixed to the values obtained from MC simulations. To account for possible width differences in the two narrowest Gaussian functions between data and simulation, an additional scale factor is introduced, which is left free in the fit. The peaking background PDF is modeled with a Crystal Ball function with parameters fixed to the values obtained in simulations.

The peaking background yield of 652 \(\pm \) 93 events is calculated from the \(B^0_{s} \) signal yield. The selection efficiencies of both peaking background modes are determined from simulation and are fixed in the fit to data. The remaining residual backgrounds are modeled with an exponential function leaving fraction and exponent free in the fit to data.

The \(B^0_{s} \) signal PDF is parametrized with three Gaussian functions that describe both the correctly reconstructed and swapped \(K^+\pi^- \) events. The PDF of the peaking background is modeled with a sum of Crystal Ball and Gaussian functions for which the relative peaking background yields of \(652 \) \(\pm 93 \) events is calculated from the \(B^0_{s} \) signal yield with \(\chi^2/\text{dof} \) values of the fits

FIG. 1 (color online). The invariant-mass spectra of \(B^0_{s} \rightarrow J/\psi \phi \) (left panel) and \(B^0_{d} \rightarrow J/\psi K^{0} \) decays (right panel) for data (points with error bars), total fit (solid line), signal (dashed line), residual background (yellow shaded), partially reconstructed events (magenta shaded) and peaking background (blue shaded).
TABLE I. Measured B_s^0 and B_d^0 signal yields, the efficiency ratio \mathcal{R}_{eff} extracted from simulations, world averages for ϕ and K^{*0} decay branching fractions, as well as corresponding systematic uncertainties σ on $(f_s/f_d)\mathcal{B}(B_s^0 \to J/\psi\phi)/\mathcal{B}(B_d^0 \to J/\psi K^{*0})]$.

<table>
<thead>
<tr>
<th>Observable</th>
<th>Value</th>
<th>σ</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{B_s^0}$</td>
<td>6640 ± 100 ± 220</td>
<td>3.3%</td>
<td></td>
</tr>
<tr>
<td>$N_{B_d^0}$</td>
<td>36290 ± 320 ± 650</td>
<td>1.8%</td>
<td></td>
</tr>
<tr>
<td>\mathcal{R}_{eff}</td>
<td>0.799 ± 0.001 ± 0.010</td>
<td>1.3%</td>
<td></td>
</tr>
<tr>
<td>$\mathcal{B}(\phi \to K^+ K^-)$</td>
<td>0.489 ± 0.005</td>
<td>1.0%</td>
<td>[15]</td>
</tr>
<tr>
<td>$\mathcal{B}(K^{*0} \to K^+ \pi^-)$</td>
<td>0.66503 ± 0.00014</td>
<td>0.02%</td>
<td>[15]</td>
</tr>
<tr>
<td>Total</td>
<td>4.1%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The multiplicative systematic uncertainty includes contributions from the relative efficiency and the branching fractions of the ϕ and K^{*0} decays. The uncertainty on the relative efficiency is dominated by the uncertainty on the ϕ/K^{*0} selection (1.2%), which is obtained by varying the fixed fit parameters in the ϕ and K^{*0} fits by ±1σ and adding all contributions in quadrature. Other uncertainties from the J/ψ selection (0.2%), reweighting (0.4%), B_s^0 and B_d^0 lifetimes (0.002%), and the contribution due to uncertainties in the polarization parameters (0.01%) are negligible. Varying the selection criteria of χ^2/dof, L_xv and α gives negligible contributions. Table I summarizes the contributions of the additive and multiplicative systematic errors.

From the ratio $N_{B_s^0}/N_{B_d^0}$ after efficiency correction and division by ϕ and K^{*0} decay branching fractions, ATLAS measures

$$f_s \mathcal{B}(B_s^0 \to J/\psi\phi)/f_d \mathcal{B}(B_d^0 \to J/\psi K^{*0}) = 0.199 \pm 0.004(\text{stat}) \pm 0.008(\text{syst}).$$

A perturbative QCD prediction [23] yields

$$\mathcal{B}(B_s^0 \to J/\psi\phi)/\mathcal{B}(B_d^0 \to J/\psi K^{*0}) = 0.83^{+0.03}_{-0.02}(m_B)^{+0.01}_{-0.00}(f_M)^{+0.01}_{-0.02}(a_l)^{+0.01}_{-0.02}(m_c),$$

where the uncertainties result from the shape parameter m_B of the B meson wave function, meson decay constants f_M, Gegenbauer moments a_l, and the c-quark mass. Adding all contributions linearly yields a 7.1% theory error. Using this prediction, the ratio of fragmentation fractions is measured to be

$$f_s/f_d = 0.240 \pm 0.004(\text{stat}) \pm 0.010(\text{syst}) \pm 0.017(\text{th}).$$

Figure 2 (right panel) shows the ATLAS f_s/f_d measurement in comparison with results from LEP [6], CDF [6,7], and LHCb [8,9]. The ratio f_s/f_d may depend on p_T and η of the B meson; e.g., LHCb observes a p_T but no η dependence of f_s/f_d [8]. Figure 2 (left panel) shows the p_T dependence of f_s/f_d for ATLAS and that of other
experiments. To investigate the \(p_T \) and \(\eta \) dependence of \(f_s/f_d \), the data sample is divided into six \(p_T \) bins in the range \(8 \text{ GeV} < p_T < 50 \text{ GeV} \) and into four \(\eta \) bins for \(|\eta| < 2.5 \) such that the number of events in each bin is approximately equal. The \(f_s/f_d \) distributions as a function of \(p_T \) and \(\eta \) have been fitted with a uniform (first-order polynomial) distribution yielding fit \(p \) values 0.54 (0.66) and 0.66 (0.49), respectively. No significant \(f_s/f_d \) dependence on \(p_T \) and \(|\eta| \) is seen at the present level of accuracy.

In summary, this Letter reports on the first ATLAS measurement of the ratio of \(B^0_s \rightarrow J/\psi K^0 \) and \(B^0_d \rightarrow J/\psi K^0 \) branching fractions multiplied by the ratio of fragmentation fractions \(f_s/f_d \) from which \(f_s/f_d \) is determined. The data were produced at the LHC in \(pp \) collisions at \(\sqrt{s} = 7 \text{ TeV} \) and correspond to an integrated luminosity of 2.47 fb\(^{-1}\). This \(f_s/f_d \) measurement, obtained with a new approach, agrees with the LHCb [8,9] results, improving the world average considerably. A comparison with the CDF [6,7] measurement and the LEP [6] average confirms the universality of \(f_s/f_d \). The ATLAS data show no dependence on \(p_T \) nor on \(|\eta| \) within the kinematic range tested.

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, USA. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA), and in the Tier-2 facilities worldwide.

[22] ATLAS Collaboration, Flavour tagged time-dependent angular analysis of the $B_0^0 \to J/\psi \phi$ decay and extraction of $\Delta \Gamma$, and the weak phase ϕ_3 in ATLAS, Phys. Rev. D 90, 052007 (2014).

X. Liu, W. Wang, and Y. Xie, Penguin pollution in $B^0 \to J/\psi \phi$ decays and impact on the extraction of the $B_0^0 - B_s^0$ mixing phase, Phys. Rev. D 89, 094010 (2014).
1Department of Physics, University of Adelaide, Adelaide, Australia
2Physics Department, SUNY Albany, Albany New York, USA
3Department of Physics, University of Alberta, Edmonton Alberta, Canada
4Department of Physics, Ankara University, Ankara, Turkey
5Istanbul Aydin University, Istanbul, Turkey
6Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
7LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
8High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA
9Department of Physics, University of Arizona, Tucson, Arizona, USA
10Physics Department, The University of Texas at Arlington, Arlington, Texas, USA
11Physics Department, University of Athens, Athens, Greece
12Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
13Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
14Department of Physics, University of Belgrade, Belgrade, Serbia
15Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA
16Department of Physics, Humboldt University, Berlin, Germany
17Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19Department of Physics, Bogazici University, Istanbul, Turkey
20Department of Physics Engineering, Gaziantepp University, Gaziantepp, Turkey
21Department of Physics, Dogus University, Istanbul, Turkey
22INFN Sezione di Bologna, Bologna, Italy
23Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
24University of Science and Technology, Beijing, China
25Department of Physics, Brandeis University, Waltham, Massachusetts, USA
26Universidade Federal do Rio De Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil
27Department of Physics, Brookhaven National Laboratory, Upton, New York, USA
28National Institute for Research and Development of Isotopic and Molecular Technologies, Physic Department, Cluj Napoca, Romania
29University Politehnica Bucharest, Bucharest, Romania
30West University in Timisoara, Timisoara, Romania
31Enrico Fermi Institute, University of Chicago, Chicago, Illionois, USA
32Department of Física, Pontificia Universidad Católica de Chile, Santiago, Chile
33Department of Física, Universidad Técnica Federico Santa Maria, Valparaiso, Chile
34Institute of Modern Physics, Chinese Academy of Sciences, Beijing, China
35Department of Modern Physics, University of Science and Technology of China, Anhui, China
36Department of Physics, Nanjing University, Jiangsu, China
37School of Physics, Shandong University, Shandong, China
38Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai, China
39Physics Department, Tsinghua University, Beijing 100084, China
40Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
41Nevis Laboratory, Columbia University, Irvington, New York, USA
42Niels Bohr Institute, University of Copenhagen, Kopenhavn, Denmark
43INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy
44Dipartimento di Fisica, Università della Calabria, Rende, Italy
45AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland
46Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland