Measurement of the Difference of Time-Integrated CP Asymmetries in $D^0 \to K^+K^-$ and $D^0 \to K^+\pi^+$ Decays.

http://dx.doi.org/10.1103/PhysRevLett.116.191601
American Physical Society

Final published version
Fri Apr 12 05:00:09 EDT 2019
http://hdl.handle.net/1721.1/102463
Creative Commons Attribution
http://creativecommons.org/licenses/by/3.0
Measurement of the Difference of Time-Integrated CP Asymmetries in $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ Decays

R. Aaij et al.*
(LHCb Collaboration)
(Received 11 February 2016; published 9 May 2016)

A search for CP violation in $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ decays is performed using pp collision data, corresponding to an integrated luminosity of 3 fb$^{-1}$, collected using the LHCb detector at center-of-mass energies of 7 and 8 TeV. The flavor of the charm meson is inferred from the charge of the pion in $D^{\ast\pm} \to D^0\pi^\pm$ and $D^{-} \to D^0\pi^-$ decays. The difference between the CP asymmetries in $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ decays, $\Delta A_{CP} \equiv A_{CP}(K^-K^+)_t - A_{CP}(\pi^-\pi^+)_t$, is measured to be $[-0.10 \pm 0.08 \text{(stat)} \pm 0.03 \text{(syst)}]\%$. This is the most precise measurement of a time-integrated CP asymmetry in the charm sector from a single experiment.

DOI: 10.1103/PhysRevLett.116.191601

Violation of charge-parity (CP) symmetry in weak decays of hadrons is described in the Standard Model (SM) by the Cabibbo-Kobayashi-Maskawa (CKM) matrix and has been observed in K- and B-meson systems [1–5]. However, no CP violation has been observed in the charm sector, despite the experimental progress seen in charm physics in the last decade. Examples are the unambiguous observation of CP violation in $D^0\to \pi^-\pi^+$ meson decays, reaching an experimental precision of $\mathcal{O}(10^{-3})$ [12]. The amount of CP violation is expected to be below the percent level [13–20], but large theoretical uncertainties due to long distance interactions prevent precise SM calculations. Charm hadrons provide a unique opportunity to search for CP violation with particles containing only up-type quarks.

This Letter presents a measurement of the difference between the time-integrated CP asymmetries of $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ decays, performed with pp collision data corresponding to an integrated luminosity of 3 fb$^{-1}$ collected using the LHCb detector at center-of-mass energies of 7 and 8 TeV. The inclusion of charge-conjugate decay modes is implied throughout except in the definition of asymmetries. This result is an update of the previous LHCb measurement with 0.6 fb$^{-1}$ of data, in which a value of $\Delta A_{CP} = (-0.82 \pm 0.21)\%$ was obtained [21].

The time-dependent CP asymmetry, $A_{CP}(f;t)$, for D^0 mesons decaying to a CP eigenstate f is defined as

$$A_{CP}(f;t) \equiv \frac{\Gamma(D^0(t) \to f) - \Gamma(D^0(t) \to \bar{f})}{\Gamma(D^0(t) \to f) + \Gamma(D^0(t) \to \bar{f})},$$

where Γ denotes the decay rate. For $f = K^-K^+$ and $f = \pi^-\pi^+$, $A_{CP}(f;t)$ can be expressed in terms of a direct component associated with CP violation in the decay amplitudes, and an indirect component associated with CP violation in the mixing or in the interference between mixing and decay. In the limit of exact symmetry under a transformation interchanging d and s quarks (U-spin symmetry), the direct component is expected to be equal in magnitude and opposite in sign for K^-K^+ and $\pi^-\pi^+$ decays [22]. However, large U-spin breaking effects could be present [13,16,23,24].

The measured time-integrated asymmetry, $A_{CP}(f)$, depends upon the reconstruction efficiency as a function of the decay time. It can be written as [25,26]

$$A_{CP}(f) \approx a^{\text{dir}}_{CP}(f) \left(1 + \frac{\langle t(f) \rangle}{\tau} y_{CP}\right) + \frac{\langle t(f) \rangle}{\tau} a^{\text{ind}}_{CP},$$

where $\langle t(f) \rangle$ denotes the mean decay time of $D^0 \to f$ decays in the reconstructed sample, $a^{\text{dir}}_{CP}(f)$ as the direct CP asymmetry, τ the D^0 lifetime, a^{ind}_{CP} the indirect CP asymmetry, and y_{CP} is the deviation from unity of the ratio of the effective lifetimes of decays to flavor specific and CP-even final states. To a good approximation, a^{ind}_{CP} is independent of the decay mode [22,27].

Neglecting terms of the order $\mathcal{O}(10^{-6})$, the difference in CP asymmetries between $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ is

$$\Delta A_{CP} \equiv A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+) \approx \Delta a^{\text{dir}}_{CP} \left(1 + \frac{\langle t \rangle}{\tau} y_{CP}\right) + \Delta \langle t \rangle \frac{\langle t \rangle}{\tau} a^{\text{ind}}_{CP},$$

where $\Delta \langle t \rangle$ is the difference in mean decay time due to the different final states.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
where $\langle t \rangle$ is the arithmetic average of $\langle t(K^-K^+) \rangle$ and $\langle t(p^-\pi^+) \rangle$.

The most precise measurements of the time-integrated \(CP \) asymmetries in \(D^0 \rightarrow K^-K^+ \) and \(D^0 \rightarrow \pi^-\pi^+ \) decays to date have been performed by the LHCb \[21,28\], CDF \[29\], BABAR \[30\] and Belle \[31,32\] collaborations. The measurement in Ref. \[28\] uses \(D^0 \) mesons produced in semileptonic \(b \)-hadron decays, where the charge of the muon is used to identify the flavor of the \(D^0 \) meson at production, while the other measurements use \(D^0 \) mesons produced in the decay of the \(D^+ \) (2010)\(^+\) meson, hereafter referred to as \(D^+ \).

The raw asymmetry, \(A_{\text{raw}}(f) \), measured for \(D^0 \) decays to a final state \(f \) is defined as

\[
A_{\text{raw}}(f) \equiv \frac{N(D^+ \rightarrow D^0(f)\pi^+_s) - N(D^- \rightarrow \bar{D}^0(f)\pi^-_s)}{N(D^+ \rightarrow D^0(f)\pi^+_s) + N(D^- \rightarrow \bar{D}^0(f)\pi^-_s)},
\]

where \(N \) is the number of reconstructed signal candidates of the given decay and the flavor of the \(D^0 \) meson is identified using the charge of the soft pion (\(\pi^-_s \)) in the strong decay \(D^+ \rightarrow D^0\pi^+_s \). The raw asymmetry can be written, up to \(O(10^{-6}) \), as

\[
A_{\text{raw}}(f) \approx A_{\text{CP}}(f) + A_D(f) + A_D(\pi^+_s) + A_p(D^+),
\]

where \(A_D(f) \) and \(A_D(\pi^+_s) \) are the asymmetries in the reconstruction efficiencies of the \(D^0 \) final state and of the soft pion, and \(A_p(D^+) \) is the production asymmetry for \(D^+ \) mesons, arising from the hadronization of charm quarks in \(pp \) collisions. The magnitudes of \(A_p(D^+) \) \[33\] and \(A_D(\pi^+_s) \) \[34\] are both about 1%. Equation (5) is only valid when reconstruction efficiencies of the final state \(f \) and of the soft pion are independent. Since both \(K^-K^+ \) and \(\pi^-\pi^+ \) final states are self-conjugate, \(A_D(K^-K^+) \) and \(A_D(p^-\pi^+) \) are identically zero. To a good approximation \(A_D(\pi^+_s) \) and \(A_p(D^+) \) are independent of the final state \(f \) in any given kinematic region, and thus cancel in the difference, giving

\[
\Delta A_{\text{CP}} = A_{\text{raw}}(K^-K^+) - A_{\text{raw}}(\pi^-\pi^+).
\]

However, to take into account an imperfect cancellation of detection and production asymmetries due to the difference in the kinematic properties of the two decay modes, the kinematic distributions of \(D^+ \) mesons decaying to the \(K^-K^+ \) final state are reweighted to match those of \(D^+ \) mesons decaying to the \(\pi^-\pi^+ \) final state. The weights are calculated for each event using the ratios of the background-subtracted distributions of the \(D^+ \) momentum, transverse momentum, and azimuthal angle for both final states after the final selection.

The LHCb detector \[35,36\] is a single-arm forward spectrometer covering the pseudorapidity range \(2 < \eta < 5 \), designed for the study of particles containing \(b \) or \(c \) quarks. The two ring-imaging Cherenkov detectors \[37\] provide particle identification (PID) to distinguish kaons from pions for momenta ranging from a few GeV/c to about 100 GeV/c. The direction of the field polarity (up or down) of the LHCb dipole magnet is reversed periodically, giving data samples of comparable size for both magnet polarities.

To select \(D^{+} \) candidates, events must satisfy hardware and software trigger requirements and a subsequent offline selection. The trigger consists of a hardware stage, based on high transverse momentum signatures in the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction. When the hardware trigger decision is initiated by calorimeter deposits from \(D^0 \) decay products, the event is categorized as “triggered on signal” (TOS). Events that are not TOS, but in which the hardware trigger decision is due to particles in the event other than the \(D^{+} \) decay products, are also accepted; these are referred to as “not triggered on signal” (nTOS). The events associated with these trigger categories present different kinematic properties. To have cancellation of production and detection asymmetries the data are split into TOS and nTOS samples and \(\Delta A_{\text{CP}} \) is measured separately in each sample.

Both the software trigger and subsequent event selection use kinematic variables and decay time to isolate the signal decays from the background. Candidate \(D^0 \) mesons must have a decay vertex that is well separated from all primary \(pp \) interaction vertices (PVs). They are combined with pion candidates to form \(D^{+} \) candidates. Requirements are placed on the track fit quality, the \(D^{+} \) vertex fit quality, where the vertex formed by \(D^0 \) and \(\pi^+_s \) candidates is constrained to coincide with the associated PV \[38\], the \(D^0 \) transverse momentum and its decay distance, the angle between the \(D^0 \) momentum in the laboratory frame and the momentum of the kaon or the pion in the \(D^0 \) rest frame, and the smallest impact parameter chi-squared (IP \(\chi^2 \)) of both the \(D^0 \) candidate and its decay products with respect to all PVs in the event. The IP \(\chi^2 \) is defined as the difference between the \(\chi^2 \) of the PV reconstructed with and without the considered particle. Cross-feed backgrounds from \(D \) meson decays with a kaon misidentified as a pion, and vice versa, are reduced using PID requirements. After these selection criteria, the dominant background consists of genuine \(D^0 \) candidates paired with unrelated pions originating from the interaction vertex.

Fiducial requirements are imposed to exclude kinematic regions having a large asymmetry in the soft pion reconstruction efficiency (see Figs. 1 and 2 in Ref. \[39\]). These regions occur because low momentum particles of one charge at large (small) angles in the horizontal plane may be deflected out of the detector acceptance (into the noninstrumented beam pipe region) whereas particles with the other charge are more likely to remain within the
for both magnet polarities. The events with multiple candidates of the D meson using simulated data and described by the sum of samples separated by center-of-mass energy, magnet fractions are the same for the 1.2% for TOS events and 2.4% for nTOS events; these reconstructed D candidates. The majority of these events contain the same δm(π±) × 7 MeV/c² for D₀ → K−K+ candidates, and δm corresponding to 0.4−0.7 MeV/c² is less than 4% of the number of signal events in the case of D₀ → K−K+ decays and to a negligible level in the case of D₀ → π±π± decays. Examples of such backgrounds are Dₜₚ = D₀(π⁺π⁰)π⁻ and Dₜₚ = D₀(π⁻π⁺)π⁻ decays. The effect on ∆ACP of residual peaking backgrounds is evaluated as a systematic uncertainty.

The value of ∆ACP is determined in each subsample (see Table 1 in Ref. [39]). Testing the eight independent measurements for mutual consistency gives χ²/ndf = 6.2/7, corresponding to a p-value of 0.52. The weighted average of the values corresponding to all subsamples is calculated as ∆ACP = (−0.10 ± 0.08)%}, where the uncertainty is statistical.

FIG. 1. Fit to the δm spectra, where the D₀ is reconstructed in the final state (left) K−K+ and (right) π±π±. The dashed line corresponds to the background component in the fit.

acceptance. About 70% of the selected candidates are retained by these fiducial requirements.

The candidates satisfying the selection criteria are accepted for further analysis if the mass difference δm = m(h⁺h⁻π±) − m(h⁺h⁻) − m(π±) for h = K, π is in the range 0.2−12.0 MeV/c² and the invariant mass of the D₀ candidate is within 2 standard deviations from the central value of the mass resolution model. The standard deviation corresponds to about 8 MeV/c² and 10 MeV/c² for D₀ → K−K+ and D₀ → π±π± decays, respectively.

The data sample includes events with multiple Dₜₚ candidates. The majority of these events contain the same reconstructed D₀ meson combined with different soft pion candidates. The fraction of events with multiple candidates in a range of δm corresponding to 4.0−7.5 MeV/c² is about 1.2% for TOS events and 2.4% for nTOS events; these fractions are the same for the K−K+ and π±π± final states, and for both magnet polarities. The events with multiple candidates are retained and a systematic uncertainty is assessed.

Signal yields and A₅(π⁻π⁺) and A₅(π⁻π⁺) are obtained from minimum χ² fits to the binned δm distributions of the D₀ → K−K+ and D₀ → π⁻π⁺ samples. The data samples are split into eight mutually exclusive subsamples separated by center-of-mass energy, magnet polarity, and trigger category. The signal shape is studied using simulated data and described by the sum of two Gaussian functions with a common mean, and a Johnson Sₚ function [40]. The background is described by an empirical function of the form 1−exp[(δm−δm₀)/α] + β(δm/δm₀ − 1), where δm₀ controls the threshold of the function, and α and β describe its shape. The fits to the eight subsamples and between the K−K+ and π−π⁺ final states are independent. Fits to the δm distributions corresponding to the whole data sample are shown in Fig. 1.

The Dₜₚ signal yield is 7.7 × 10⁶ for D₀ → K−K+ decays, and 2.5 × 10⁶ for D₀ → π±π± decays. The signal purity is (88.7 ± 0.1)% for D₀ → K−K+ candidates, and (87.9 ± 0.1)% for D₀ → π±π± candidates, in a range of δm corresponding to 4.0−7.5 MeV/c². The fits do not distinguish between the signal and the backgrounds that peak in δm. Such backgrounds, which can arise from Dₜₚ decays where the correct soft pion is found but the D₀ meson is misreconstructed, are suppressed by the PID requirements to less than 4% of the number of signal events in the case of D₀ → K−K+ decays and to a negligible level in the case of D₀ → π±π± decays. Examples of such backgrounds are Dₜₚ → D₀(π⁺π⁰)π⁻ and Dₜₚ → D₀(π⁻π⁺)π⁺ decays. The effect on ∆ACP of residual peaking backgrounds is evaluated as a systematic uncertainty.

The value of ∆ACP is determined in each subsample (see Table 1 in Ref. [39]). Testing the eight independent measurements for mutual consistency gives χ²/ndf = 6.2/7, corresponding to a p-value of 0.52. The weighted average of the values corresponding to all subsamples is calculated as ∆ACP = (−0.10 ± 0.08)%}, where the uncertainty is statistical.

FIG. 2. Contour plot of ∆a_{CP}^m versus a_{CP}^m. The point at (0,0) denotes the hypothesis of no CP violation. The solid bands represent the measurements in Refs. [28,45,46] and the one reported in this Letter. The value of y_{CP} is taken from Ref. [47]. The contour lines shows the 68%, 95%, and 99% confidence-level intervals from the combination.
The central value is considerably closer to zero than
\[\Delta A_{CP} = (-0.82 \pm 0.21)\% \], obtained in our previous analy-
sis where a data sample corresponding to an integrated
luminosity of 0.6 fb\(^{-1}\) was considered [21]. Several factors
contribute to the change, including the increased size of the
data sample and changes in the detector calibration and
reconstruction software. To estimate the impact of process-
ing data using different reconstruction software, the data
used in Ref. [21] are divided into three samples. The first
(second) sample contains events that are selected when
using the old (new) version of the reconstruction software
and are discarded by the new (old) one, while the third
sample consists of those events that are selected by both
versions. The measured values are
\[\Delta A_{CP} = (-1.10 \pm 0.46)\% , \quad \Delta A_{CP} = (0.13 \pm 0.37)\% , \quad \text{and} \quad \Delta A_{CP} = (-0.71 \pm 0.26)\% \],
respectively. The measurement obtained using
the additional data based on an integrated luminosity of
2.4 fb\(^{-1}\) corresponds to a value of
\[\Delta A_{CP} = (-0.06 \pm 0.09)\% \]. A comparison of the four independent
measurements gives \(\chi^2/\text{ndf} = 10.5/3 \), equivalent to a \(p \)-value
of 0.015. Although this value is small, no evidence of in-
compatibility among the various subsamples has been found.
Only statistical uncertainties are considered in this study.

Many sources of systematic uncertainty that may affect
the determination of \(\Delta A_{CP} \) are considered. The possibility
of an incorrect description of the signal mass model is
investigated by replacing the function in the baseline fit
with alternative models that provide equally good descrip-
tions of the data. A value of 0.016\% is assigned as
systematic uncertainty, corresponding to the largest vari-
ation observed using the alternative functions.

To evaluate the systematic uncertainty related to the
presence of multiple candidates in an event, \(\Delta A_{CP} \)
is measured in samples where one candidate per event is
randomly selected. This procedure is repeated 100 times
with a different random selection. The difference of the
mean value of these measurements from the nominal result,
0.015\%, is taken as systematic uncertainty.

A systematic uncertainty associated with the presence of
background peaking in the \(\delta m \) signal distribution and not in
the \(D^0 \) invariant mass distribution is determined by meas-
uring \(\Delta A_{CP} \) from fits to the \(D^0 \) invariant mass spectra
instead of \(\delta m \). Fits are made for \(D^0 \rightarrow K^-K^+ \) and \(D^0 \rightarrow
\pi^-\pi^+ \) candidates within a \(\delta m \) window 4.0–7.5 MeV/\(c^2 \).
The background due to genuine \(D^0 \) mesons paired with
unrelated pions originating from the interaction vertex is
subtracted by means of analogous fits to the candidates in
the \(\delta m \) window 8.0–12.0 MeV/\(c^2 \), where the signal is not
present. The difference in the \(\Delta A_{CP} \) value from the
baseline, 0.011\%, is assigned as a systematic uncertainty. A
systematic uncertainty of 0.004\% is assigned for uncer-
tainties associated with the weights calculated for the
kinematic reweighting procedure.

A systematic uncertainty is associated with the choice of
fiducial requirements on the soft pion applied to exclude
regions with large raw asymmetries. To evaluate this
uncertainty, the baseline results are compared to results
obtained when looser fiducial requirements are applied.
The resulting samples include events closer to the regions
with large raw asymmetries, at the edges of the detector
acceptance and around the beam pipe (see Fig. 1 in
Ref. [39]). The difference in the \(\Delta A_{CP} \) values, 0.017\%,
is taken as the systematic uncertainty.

Although suppressed by the requirement that the \(D^0 \)
trajectory points back to the primary vertex, \(D^+ \) mesons
produced in the decays of beauty hadrons (secondary charm
decays) are still present in the final sample. As
the \(D^0 \rightarrow K^-K^+ \) and \(D^0 \rightarrow \pi^-\pi^+ \) decays may have different
amounts of this contamination, the value of \(\Delta A_{CP} \) may
be biased because of an incomplete cancellation of the
production asymmetries of beauty and charm hadrons.
The fractions of secondary charm decays are estimated by
performing a fit to the distribution of \(IP \chi^2 \) of the \(D^0 \) with
respect to all PVs in the event, and are found to be
\((2.8 \pm 0.1)\% \) and \((3.4 \pm 0.1)\% \) for the \(D^0 \rightarrow K^-K^+ \) and
\(D^0 \rightarrow \pi^-\pi^+ \) samples, respectively. Using the LHCB
measurements of production asymmetries [33,41–43], the
corresponding systematic uncertainty is estimated to
be 0.004\%.

To investigate other sources of systematic uncertainty,
numerous robustness checks have been made. The value of
\(\Delta A_{CP} \) is studied as a function of data taking periods and no
evidence of any dependence is found. A measurement of
\(\Delta A_{CP} \) using more restrictive PID requirements is
performed, and all variations of \(\Delta A_{CP} \) are found to be
compatible within statistical uncertainties. To check for
possible reconstruction biases, the stability of \(\Delta A_{CP} \) is also
investigated as a function of many reconstructed quantities,
including the number of reconstructed PVs, the \(D^0 \) invari-
ant mass, the \(D^0 \) transverse momentum, the \(D^0 \) flight
distance, the \(D^0 \) azimuthal angle, the smallest \(IP \chi^2 \) impact
parameter of the \(D^0 \) and of the soft pion with respect to all
the PVs in the events, the quality of \(D^+ \) vertex, the
transverse momentum of the soft pion, and the quantity
\(\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} \), where \(\Delta \phi \) and \(\Delta \eta \) are the differences
between \(D^0 \) and soft pion azimuthal angles and pseudor-
apidities. No evidence of dependence of \(\Delta A_{CP} \) on any of
these variables is found. An additional cross-check con-
cerns the measured value of \(\Delta A_{bkg} \) defined as the differ-
ence between the background raw asymmetries
\(A_{bkg}(K^-K^+) \) and \(A_{bkg}(\pi^-\pi^+) \). A value of \(\Delta A_{bkg} =
(-0.46 \pm 0.13)\% \) is obtained from the fits. In the absence
of misidentified or misreconstructed backgrounds, one
would expect a value consistent with zero. Decays of
\(D^0 \rightarrow K^-K^+ \) and \(D^0 \rightarrow \pi^-\pi^+ \) have different sources of
backgrounds that do not peak in \(\delta m \). These include three-
body decays of charmed hadrons with misidentified par-
ticles in the final state, as well as four-body decays where
one particle is not reconstructed. More restrictive PID
requirements have been applied to suppress such
backgrounds, and the region of the fits has been extended up to 16 MeV/c^2 to improve the precision. A value of $\Delta A_{\text{bkg}} = (-0.22 \pm 0.13)\%$ is found. The corresponding ΔA_{CP} value is $(-0.12 \pm 0.09)\%$, consistent with the baseline result when the overlap of the two samples is taken into account. Hence, the measurement of ΔA_{CP} is robust and is not influenced by the background asymmetry. All contributions are summed in quadrature to give a total systematic uncertainty of 0.03%.

To interpret the ΔA_{CP} result in terms of direct and indirect CP violation, the reconstructed decay time averages, for $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ samples, are measured. The difference and the average of the mean decay times relative to the D^0 lifetime are computed, giving $\Delta(t)/\tau(D^0) = 0.1153 \pm 0.0007\,\text{(stat)} \pm 0.0018\,\text{(syst)}$ and $\langle t \rangle/\tau(D^0) = 2.0949 \pm 0.0004\,\text{(stat)} \pm 0.0159\,\text{(syst)}$. The systematic uncertainties are due to the uncertainty on the world average of the D^0 lifetime [44], decay-time resolution model, and the presence of secondary D^0 mesons from b-hadron decays. Given the dependence of ΔA_{CP} on the direct and indirect CP asymmetries [Eq. (3)] and the measured value of $\Delta(t)/\tau$, the contribution from indirect CP violation is suppressed and ΔA_{CP} is primarily sensitive to direct CP violation. Assuming that indirect CP violation is independent of the D^0 final state, and combining the measurement reported in this Letter with those reported in Ref. [28] and with the LHCb measurements of indirect CP asymmetries ($A_P = -a_{CP}^{\text{ind}}$) [45,46] and γ_{CP} [47], the values of the direct and indirect CP asymmetries are found to be $a_{CP}^{\text{dir}} = (0.058 \pm 0.044)\%$ and $\Delta a_{CP}^{\text{dir}} = (0.061 \pm 0.076)\%$. Results are summarized in the $(\Delta a_{CP}^{\text{dir}}, a_{CP}^{\text{ind}})$ plane shown in Fig. 2. The result is consistent with the hypothesis of CP symmetry with a p-value of 0.32.

In summary, the difference of time-integrated CP asymmetries between $D^0 \to K^-K^+$ and $D^0 \to \pi^-\pi^+$ decays is measured using pp collision data corresponding to an integrated luminosity of 3.0 fb$^{-1}$. The final result is

$$\Delta A_{CP} = [−0.10 \pm 0.08\,(\text{stat}) \pm 0.03\,(\text{syst})]\%,$$

which supersedes the previous result obtained using the same decay channels based on an integrated luminosity of 0.6 fb$^{-1}$ [21]. This is the most precise measurement of a time-integrated CP asymmetry in the charm sector from a single experiment.

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); FOM and NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FANO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany), EPLANET, Marie Sklodowska-Curie Actions and ERC (European Union), Conseil Général de Haute-Savoie, Labex ENIGMASS and OCEVU, Région Auvergne (France), RFBR and Yandex LLC (Russia), GVA, XuntaGal and GENCAT (Spain), and The Royal Society, Royal Commission for the Exhibition of 1851 and the Leverhulme Trust (United Kingdom).

[6] B. Aubert et al. (BABAR Collaboration), Evidence for $D^0\to\bar{D}^0$ Mixing, Phys. Rev. Lett. 98, 211802 (2007).
[7] M. Staric et al. (Belle Collaboration), Measurement of $D^0\to\bar{D}^0$ mixing and search for CP violation in $D^+\to K^+K^+\pi^+\pi^-$ decays with the full Belle data set, Phys. Lett. B 753, 412 (2016).
[10] R. Aaij et al. (LHCb Collaboration), Measurement of $D^0\to\bar{D}^0$ Mixing Parameters and Search for CP Violation Using $D^0\to K^+\pi^-$ Decays, Phys. Rev. Lett. 111, 251801 (2013).
[11] R. Aaij et al. (LHCb Collaboration), First observation of $D^0\to\bar{D}^0$ oscillations in $D^+\to K^+\pi^+\pi^-\pi^-$ decays and a measurement of the associated coherence parameters, arXiv:1602.07224.
H.-n. Li, C.-D. Lu, and F.-S. Yu, Branching ratios and direct
B. Bhattacharya, M. Gronau, and J. L. Rosner, CP
 asymmetries in singly Cabibbo-suppressed D decays to
D. Pirskhalava and P. Utyayarat, CP violation and mixing
and SU(3) breaking in D-meson decays, Phys. Lett. B 712, 81
(2012).
J. Brod, Y. Grossman, and J. Zupan, A consistent picture for large
penguins in \(D^0 \rightarrow \pi^+\pi^- \), \(K^-K^+ \), J. High Energy Phys. 10 (2012) 161.
H.-Y. Cheng and C.-W. Chiang, SU(3) symmetry breaking and
CP violation in \(D \rightarrow PP \) decays, Phys. Rev. D 86, 014014 (2012).
S. Müller, U. Nierste, and S. Schacht, Sum Rules of Charm
M. Golden and B. Grinstein, Enhanced CP violations in
H.-n. Li, C.-D. Lu, and F.-S. Yu, Branching ratios and direct
R. Aaij et al. (LHCb Collaboration), Evidence for CP
M. Gronau, SU(3) in D decays: From 30\% symmetry
Y. Grossman and D. J. Robinson, SU(3) sum rules for charm
T. Aaltonen et al. (CDF Collaboration), Measurement of
CP-violating asymmetries in \(D^0 \rightarrow \pi^+\pi^- \) and \(D^0 \rightarrow K^+K^- \) decays at CDF, Phys. Rev. D 85, 012009 (2012).
M. Gersabeck, M. Alexander, S. Borghi, V. V. Gigorov, and
C. Parkes, On the interplay of direct and indirect CP
A. L. Kagan and M. D. Sokoloff, Indirect CP violation and
implications for \(D^0 - \bar{D}^0 \) and \(B_0^+ - \bar{B}_0^0 \) mixing, Phys. Rev. D 80, 076008 (2009).
R. Aaij et al. (LHCb Collaboration), Measurement of CP
asymmetry in \(D^0 \rightarrow K^-K^+ \) and \(D^0 \rightarrow \pi^+\pi^- \) decays, J. High Energy Phys. 07 (2014) 041.
T. Aaltonen et al. (CDF Collaboration), Measurement of the
Difference in CP-Violating Asymmetries in \(D^0 \rightarrow K^-K^+ \) and
\(D^0 \rightarrow \pi^+\pi^- \) Decays at CDF, Phys. Rev. Lett. 109, 111801 (2012).
B. Aubert et al. (BABAR Collaboration), Search for CP
Violation in the Decays \(D^0 \rightarrow K^-K^+ \) and \(D^0 \rightarrow \pi^+\pi^- \), Phys. Rev. Lett. 100, 061803 (2008).
M. Staric et al. (Belle Collaboration), Search for a CP
B. R. Ko, CP violation and mixing in the charm sector at
R. Aaij et al. (LHCb Collaboration), Measurement of the
R. Aaij et al. (LHCb Collaboration), Measurement of the
\(D^{-} \rightarrow D_{s}^{+} \) production asymmetry in 7 TeV \(pp \) collisions, Phys. Lett. B 713, 186 (2012).
A. A. Alves Jr. et al. (LHCb Collaboration), The LHCb
R. Aaij et al. (LHCb Collaboration), LHCb detector
M. Adinolfi et al., Performance of the LHCb RICH detector
W. D. Hulsbergen, Decay chain fitting with a Kalman filter,
plots and details.
N. L. Johnson, Systems of frequency curves generated by
methods of translation, Biometrika 36, 149 (1949).
R. Aaij et al. (LHCb Collaboration), Measurement of the
Semileptonic CP Asymmetry in \(B^0 \rightarrow \bar{B}^0 \) Mixing, Phys. Rev. Lett. 114, 041601 (2015).
R. Aaij et al. (LHCb Collaboration), Measurement of the
\(B^0 \rightarrow \bar{B}^0 \) and \(B_0^\pm \rightarrow \bar{B}_0^\mp \) production asymmetries in \(pp \) collisions
R. Aaij et al. (LHCb Collaboration), Study of the produc-
tions of \(\Lambda^0_b \) and \(\bar{B}^0 \) hadrons in \(pp \) collisions and first measurement of the \(\Lambda^0_b \rightarrow J/\psi p K^- \) branching
K. A. Olive et al. (Particle Data Group), Review of particle
R. Aaij et al. (LHCb Collaboration), Measurements of
Indirect CP Asymmetries in \(D^0 \rightarrow K^-K^+ \) and \(D^0 \rightarrow \pi^+\pi^- \) Decays, Phys. Rev. Lett. 112, 041801 (2014).
R. Aaij et al. (LHCb Collaboration), Measurement of
indirect CP asymmetries in \(D^0 \rightarrow K^-K^+ \) and \(D^0 \rightarrow \pi^+\pi^- \) decays, J. High Energy Phys. 04 (2015) 043.
R. Aaij et al. (LHCb Collaboration), Measurement of mixing
and CP violation parameters in two-body charm
11 Max-Planck-Institut für Kernphysik (MPIK), Heidelberg, Germany
12 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
13 School of Physics, University College Dublin, Dublin, Ireland
14 Sezione INFN di Bari, Bari, Italy
15 Sezione INFN di Bologna, Bologna, Italy
16 Sezione INFN di Cagliari, Cagliari, Italy
17 Sezione INFN di Ferrara, Ferrara, Italy
18 Sezione INFN di Firenze, Firenze, Italy
19 Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy
20 Sezione INFN di Genova, Genova, Italy
21 Sezione INFN di Milano Bicocca, Milano, Italy
22 Sezione INFN di Milano, Milano, Italy
23 Sezione INFN di Padova, Padova, Italy
24 Sezione INFN di Pisa, Pisa, Italy
25 Sezione INFN di Roma Tor Vergata, Roma, Italy
26 Sezione INFN di Roma La Sapienza, Roma, Italy
27 Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Kraków, Poland
28 AGH—University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland
29 National Center for Nuclear Research (NCBJ), Warsaw, Poland
30 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania
31 Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia
32 Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia
33 Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia
34 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
35 Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
36 Institute for High Energy Physics (IHEP), Protvino, Russia
37 Universitat de Barcelona, Barcelona, Spain
38 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
39 European Organization for Nuclear Research (CERN), Geneva, Switzerland
40 École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
41 Physik-Institut, Universität Zürich, Zürich, Switzerland
42 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
43 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
44 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
45 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
46 University of Birmingham, Birmingham, United Kingdom
47 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
48 Department of Physics, University of Warwick, Coventry, United Kingdom
49 STFC Rutherford Appleton Laboratory, Didcot, United Kingdom
50 School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
51 School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom
52 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom
53 Imperial College London, London, United Kingdom
54 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
55 Department of Physics, University of Oxford, Oxford, United Kingdom
56 Massachusetts Institute of Technology, Cambridge, MA, United States
57 University of Cincinnati, Cincinnati, OH, United States
58 University of Maryland, College Park, MD, United States
59 Syracuse University, Syracuse, NY, United States
60 Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil (associated with Institution Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil)
61 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China (associated with Institution Center for High Energy Physics, Tsinghua University, Beijing, China)
62 Departamento de Física, Universidad Nacional de Colombia, Bogota, Colombia (associated with Institution LPNHE, Université Pierre et Marie Curie, Université Paris Diderot, CNRS/IN2P3, Paris, France)
63 Institut für Physik, Universität Rostock, Rostock, Germany (associated with Institution Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany)
64 National Research Centre Kurchatov Institute, Moscow, Russia (associated with Institution Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia)
Yandex School of Data Analysis, Moscow, Russia (associated with Institution Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia)

Instituto de Fisica Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain (associated with Institution Universitat de Barcelona, Barcelona, Spain)

Van Swinderen Institute, University of Groningen, Groningen, The Netherlands (associated with Institution Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands)

Also at Università di Ferrara, Ferrara, Italy.

Also at Università della Basilicata, Potenza, Italy.

Also at Università di Milano Bicocca, Milano, Italy.

Also at Università di Modena e Reggio Emilia, Modena, Italy.

Also at LIFAEAL, La Salle, Universitat Ramon Llull, Barcelona, Spain.

Also at Università di Bologna, Bologna, Italy.

Also at Università di Roma Tor Vergata, Roma, Italy.

Also at Università di Genova, Genova, Italy.

Also at Scuola Normale Superiore, Pisa, Italy.

Also at Università di Cagliari, Cagliari, Italy.

Also at Università di Padova, Padova, Italy.

Also at Laboratoire Leprince-Ringuet, Palaiseau, France.

Also at Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil.

Also at AGH—University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland.

Also at Università degli Studi di Milano, Milano, Italy.

Also at Hanoi University of Science, Hanoi, Vietnam.

Also at Università di Bari, Bari, Italy.

Also at Università di Roma La Sapienza, Roma, Italy.

Also at Università di Pisa, Pisa, Italy.

Also at Università di Urbino, Urbino, Italy.

Also at P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia.