Seasonal fluxes of carbonyl sulfide in a midlatitude forest

The MIT Faculty has made this article openly available. **Please share** how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1073/pnas.1504131112</td>
</tr>
<tr>
<td>Publisher</td>
<td>National Academy of Sciences (U.S.)</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sun Dec 16 20:38:24 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/103577</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>

MIT Open Access Articles

METRIC

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

DSpace@MIT
Seasonal fluxes of carbonyl sulfide in a midlatitude forest

Róisin Commane,a,b,1 Laura K. Meredith,c,2 Ian T. Baker,d Joseph A. Berry,e J. William Mungera,b, Stephen A. Montzka,f Pamela H. Templer,g Stephanie M. Juice,h Mark S. Zahniser,a and Steven C. Wofsy*a,b

*Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; 1Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138; 2Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139; 3Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523; 4Department of Global Ecology, Carnegie Institution, Stanford, CA 94305; 5Global Monitoring Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO 80305; 6Department of Biology, Boston University, Boston, MA 02215; and 7Center for Atmospheric and Environmental Chemistry, Aerodyne Research Inc., Billerica, MA 01821

Edited by Graham D. Farquhar, Australian National University, Canberra, ACT, Australia, and approved October 9, 2015 (received for review February 27, 2015)

Carbonyl sulfide (OCS), the most abundant sulfur gas in the atmosphere, has a summer minimum associated with uptake by vegetation and soils, closely correlated with CO2. We report the first direct measurements to our knowledge of the ecosystem flux of OCS throughout an annual cycle, at a mixed temperate forest. The forest took up OCS during most of the growing season with an overall uptake of 1.36 ± 0.01 mol OCS per ha (43.5 ± 0.5 g S per ha, 95% confidence intervals) for the year. Daytime fluxes accounted for 72% of total uptake. Both soils and incompletely closed stomata in the canopy contributed to nighttime fluxes. Unexpected net OCS emission occurred during the warmest weeks in summer. Many requirements necessary to use fluxes of OCS as a simple estimate of photosynthesis were not met because OCS fluxes did not have a constant relationship with photosynthesis throughout an entire day or over the entire year. However, OCS fluxes provide a direct measure of ecosystem-scale stomatal conductance and mesophyll function, without relying on measures of soil evaporation or leaf temperature, and reveal previously unseen heterogeneity of forest canopy processes. Observations of OCS flux provide powerful, independent means to test and refine land surface and carbon cycle models at the ecosystem scale.

Carbonyl sulfide (OCS) is the most abundant sulfur gas in the atmosphere (1), and biogeochemical cycling of OCS affects both the stratosphere and the troposphere. The tropospheric OCS mixing ratio is between 300 and 550 parts per trillion (ppt) (1) (10−12 mol OCS per mol dry air), decreasing sharply with altitude in the stratosphere (2). In times of low volcanic activity, the sulfur budget and aerosol loading of the stratosphere are largely controlled by transport and photooxidation of OCS from the troposphere (3). The processes regulating emission and uptake of OCS are thus important factors in determining how changes in climate and land cover may affect the stratospheric sulfate layer.

Oceans are the dominant source of atmospheric OCS (4), with smaller emissions from anthropogenic and terrestrial sources, such as wetlands and anoxic soils (e.g., refs. 5 and 6) and oxic soils during times of heat or drought stress (e.g., refs. 7 and 8). The terrestrial biosphere is the largest sink for OCS (1, 4, 9, 10) with uptake by both oxic soils (e.g., ref. 11) and vegetation (e.g., ref. 9). Once OCS molecules pass through the stomata of leaves, the uptake rate of OCS is controlled by reaction with carbonic anhydrase (CA) within the mesophyll, to produce H2S and CO2. CA is the same enzyme that hydrolyzes carbon dioxide (CO2) in the first chemical step of photosynthesis (12).

Studies considering the large-scale atmospheric variability of OCS have linked OCS fluxes and the photosynthetic uptake of CO2 for regional and global scales (1, 4, 13). Leaf-scale studies have confirmed the OCS link to photosynthesis (14, 15). Initial OCS ecosystem flux estimations were made using flask sampling followed by analysis via gas chromatography–mass spectrometry (GC-MS) (13, 16), but these studies did not have sufficient resolution to examine daily or hourly controls on the OCS flux. Laser spectrometers have been developed (17, 18) to enable direct, in situ measurement of OCS fluxes by eddy covariance, and measurements of OCS ecosystem fluxes have been reported, for periods of up to a few weeks, above arid forests (19) and an agricultural field (8, 20).

Net carbon exchange in terrestrial ecosystems [net ecosystem exchange (NEE)] can be measured by eddy flux methods. NEE may be regarded as the sum of two gross fluxes: gross ecosystem productivity (GEP) and ecosystem respiration (Reco). GEP is the light-dependent part of NEE, estimated by subtracting daytime ecosystem respiration (Reco), computed by extrapolation of the temperature dependence of nighttime NEE (NEE – Reco = GEP) (e.g., refs. 21–24). At night, NEE includes all autotrophic and heterotrophic respiration processes. During the day, GEP approximates the carboxylation rate minus photorespiration at the ecosystem scale (25). Extrapolation of nighttime Reco introduces major uncertainty in the interpretation of GEP, which could be reduced, and the ecological significance of GEP increased, by developing independent methods of measuring rates of photosynthetic processes. As shown below, fluxes of OCS give more

Significance

The flux of carbonyl sulfide (OCS) provides a quantitative, independent measure of biospheric activity, especially stomatal conductance and carbon uptake, at the ecosystem scale. We describe the factors controlling the hourly, daily, and seasonal fluxes of OCS based on 1 year of observations in a forest ecosystem. Vegetation dominated uptake of OCS, with daytime fluxes accounting for 72% of the total uptake for the year. Nighttime fluxes had contributions from both incompletely closed stomata and soils. Net OCS emission was observed at high temperature in summer. Diurnal and seasonal variations in OCS flux show variable stoichiometry relative to photosynthetic uptake of CO2. An effective model framework is shown, using an explicit representation of ecosystem processing of OCS.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Data deposition: The data have been deposited in the Harvard Forest Data Archive, harvardforest.fas.harvard.edu/8080exist/appidatasets/showData.html?cid=hF14.1
To whom correspondence should be addressed. Email: rcommane@seas.harvard.edu.

1Present address: Stanford School of Earth, Energy & Environmental Sciences, Stanford University, Stanford, CA 94305.

This article contains supporting information online at www.pnas.orglookup/ suppl/doi:10.1073/pnas.1504131112/-/DSupplemental.
direct information on one of the major controls on GEP, stomatal conductance, rather than GEP itself, providing a powerful means for testing and improving ecosystem models and for scaling up leaf-level processes to the whole ecosystem.

Here we describe the factors controlling the hourly, daily, seasonal, and total fluxes of OCS in a forest ecosystem, using a year (2011) of high-frequency, direct measurements at Harvard Forest, MA. We report the seasonal cycle, the response to environmental conditions, and the total deposition flux of OCS throughout the year 2011. We compare these fluxes to corresponding measurements of CO$_2$ flux and to simulations using the Simple Biosphere model (SiB3).

Results and Discussion

Details of the measurement method and deployment at the Environmental Measurement Site (EMS) flux tower at Harvard Forest are presented in Methods and Supporting Information.

Seasonal Fluxes of OCS Show Strong Vegetative Uptake. Ecosystem fluxes of OCS ($F_{F_{\text{OCS}}}$) varied with air and surface soil temperature through the year and showed complex behavior (Fig. 1). The observed time series of OCS mixing ratios in 2011 followed the typical seasonal cycle measured previously at Harvard Forest (Fig. S1) (1). Total net OCS flux for 2011 was -1.36 ± 0.01 mol OCS per ha per y (-43.5 ± 0.5 g S per ha per y, uptake from the atmosphere). The nighttime fluxes averaged -0.38 ± 0.01 mol OCS per ha per y (-12.3 ± 0.4 g S per ha per y), ~28% of total uptake, peaking in spring and autumn (Fig. 1B and Supporting Information).

As expected, the largest uptake fluxes were observed during the growing season (Fig. 1), starting in April when conifer trees became active and the snowpack melted to expose the forest soil. Nighttime uptake of OCS (Fig. 1A) increased through May and June in parallel with photosynthesis, marked by bud break of deciduous trees (May 5) and sharply increased rates of sap flow (May 19). This trend was unexpectedly interrupted by strong emission of OCS during midday hours in late July, when soil moisture was lowest and air temperature was the warmest of the year. As soil moisture gradually increased in August, net OCS uptake resumed in the daytime, but net VOC emission was observed at night (Fig. 1B). In September and October, the daily total and nighttime OCS uptake flux diminished as air and soil temperature decreased, whereas nighttime OCS uptake resumed. Daytime emissions of OCS were observed yet again in early November, during the senescence of red oak (*Quercus rubra*) leaves, cancelling the nighttime uptake and resulting in a daily mean $F_{\text{OCS}} \sim 0$. In mid-December 2011, anomalously low snowfall and above-freezing air and soil temperature appeared to stimulate daytime OCS uptake, possibly reflecting uptake by conifer trees.

Nighttime OCS Uptake. Nighttime, light-independent uptake of OCS is likely mediated by both soils and vegetation. Nighttime transpiration through incompletely closed stomata has been observed in many tree species (26, 27), and nighttime OCS uptake has been observed in deciduous and conifer forests during the growing season (28). Soil fluxes are significant for both CO$_2$ and OCS but typically have opposite signs: CO$_2$ is released from soils, whereas OCS is generally taken up. Carbonic anhydrase is present in the soil microorganisms typical of toxic soils found at Harvard Forest (29). OCS has been observed to be taken up by toxic soils, but the rate is notably slower on the ecosystem scale than OCS uptake by vegetation (30). Maseyk et al. (8) attributed ~29% of total OCS flux by winter wheat to nighttime OCS uptake by foliage, with only 1–6% due to soils, at the peak of the growing season (8). The results of these studies generally agree with our results during the growing season. However, the continued strong uptake of OCS from October through December (Table S1), after the decline in activity of the deciduous canopy, implicate soil uptake as a significant portion of annual uptake, when accounting for the dormant season. We infer that uptake by soils, and potentially by conifer leaves, may contribute to the strong vertical gradient in OCS mixing ratios observed over North America from October to December (1).

Separating Vegetative and Soil Uptake of OCS and CO$_2$. To separate the influence of soil and vegetative processes, we examined time periods when each process dominates: early December (soil uptake dominant), April/November (soil and conifer) and May–October (soil, conifer, and deciduous trees).

In early December, before the air temperature warmed again in mid-December, deciduous leaves were absent, and air temperature was below freezing. The soil temperature at Harvard Forest in 2011 was 2.5 °C higher than the 12-y average (2001–2012) for the entire year, even when air temperature dropped below freezing. Measurements of sap flow rate (Supporting Information) show that the red oak trees activity was sharply diminished after November 13. The early December OCS uptake (7.2 ± 3.4 (95% confidence interval; CI) pmol-m$^{-2}$-s$^{-1}$; Fig. S2) was similar to the total ecosystem OCS uptake in late November, with no statistical difference between daytime (6.0 ± 1.0 pmol-m$^{-2}$-s$^{-1}$) and nighttime (10.3 ± 7.6 pmol-m$^{-2}$-s$^{-1}$) OCS uptake. We infer that the OCS uptake from cold but unfrozen soils is about 7 pmol-m$^{-2}$-s$^{-1}$. After the soils froze, the OCS flux was not measurably different from zero throughout the winter (Fig. S2).

In late April, once the soils thawed with warming air temperature and conifer activity began, daytime uptake (18.8 ± 18.0 pmol-m$^{-2}$-s$^{-1}$) was greater than nighttime OCS uptake (7.7 ± 5.4 pmol-m$^{-2}$-s$^{-1}$), suggesting daytime conifer leaf uptake of 11 ± 18 pmol-m$^{-2}$-s$^{-1}$. The late April nighttime uptake, after soils thaw, is comparable to early December total uptake, which we have attributed to soil uptake. However, we were not able to partition the nighttime uptake of OCS into soil and vegetative contributions in late April. This estimate, for active soils in April and December is in close agreement with the average soil uptake measured in a creek area in Colorado (28) of 7 ± 2.6 pmol-m$^{-2}$-s$^{-1}$ and is slightly greater...
Dependence of OCS Flux on Wind Direction and Temperature. Fluxes of OCS reveal heterogeneity by wind direction, reflecting the tree species distribution within the flux tower footprint (Supporting Information). In June, August, and September, daytime fluxes of OCS for air from the northwest (NW; mixed conifer and deciduous, 40.9 ± 8.2 pmol·m⁻²·s⁻¹) were almost twice as large as the OCS uptake in air from the southwest (SW; deciduous dominated, 23.5 ± 8.2 pmol·m⁻²·s⁻¹). By contrast, the net daytime CO₂ flux was roughly the same in both wind directions [Fₐ₅O₂ (NW) = −23.0 ± 1.0 µmol·m⁻²·s⁻¹ vs. Fₐ₅O₂ (SW) = −22.1 ± 0.9 µmol·m⁻²·s⁻¹]. The higher daytime OCS uptake flux in air from the NW sector, combined with larger nighttime ecosystem respiration (Fₑₑₑₑ) from this sector, suggests that the magnitudes of daytime Rₑₑₑₑ and GEP are both greater in this conifer-dominated sector, compared with the deciduous-dominated SW sector. In this example, Fₑₑₑₑ data, combined with Fₐ₅O₂ data, provide unique information about the metabolic activity of plant leaves at the ecosystem scale, which are traceable to the controlling factors of photosynthesis. However, careful interpretation is required because Fₑₑₑₑ is not a direct measure of photosynthesis.

Fluxes of OCS, CO₂, and GEP showed strong dependence on air temperature (Fig. 2A). When the air temperature rose above 16 °C, net Fₐ₅O₂ changed from positive (respiration dominated) to negative (photosynthesis dominated). When the canopy was fully developed and leaves in the canopy were most active, uptake of both OCS and CO₂ were strongest, peaking at the highest temperature, except for the anomalous period in July when OCS was emitted by leaves but CO₂ uptake continued.

Ecosystem OCS Flux Dependence on Light and Stomatal Conductance. Both OCS and CO₂ diffuse from the atmosphere through stomata into leaves, where they are hydrolyzed by the light-independent enzyme carbonic anhydrase (CA). For OCS, the products are H₂S and CO₂, and the process is thought to be irreversible. In contrast, fixation of CO₂ through photosynthesis is a two-step process: diffusion into the leaves, reversible hydration by CA, then light-dependent and irreversible fixation by RuBisCo. Uptake of OCS does not require light, but OCS fluxes covary with light indirectly, via stomatal opening. The OCS flux is largely controlled by the conductance of the stomata in series with the mesophyll (cell walls and membranes), which regulate the rate of diffusion of OCS from the air to the site of the CA reaction. Gas exchange studies with leaves indicate that the mesophyll component of the effective conductance scales with the amount of RuBisCo in leaves of C3 and C4 species. The stomatal component is linked to the instantaneous rate of photosynthesis, humidity, and the chloroplast CO₂ concentration (4).

We infer that measurements of ecosystem OCS fluxes promise to provide new means to determine stomatal conductance on the ecosystem scale. The fluxes of OCS, CO₂, and GEP show strong dependences on photosynthetically active radiation (PAR; Fig. 2B), with important differences among them. We observed strong OCS uptake earlier in the day and persisting later in the day than net CO₂ uptake, which is offset by respiration. This behavior was predicted by Goldan et al. (9) and is observed here for the first time to our knowledge at the ecosystem scale (Fig. 2B).

We explored the link between Fₑₑₑₑ and stomatal conductance using the SiB3 model (Methods). The SiB3 model uses the Ball–Berry equation for stomatal conductance and has a simple parameterization of the mesophyll component. The mean diel cycle of the observed OCS flux and the calculated stomatal conductance are very similar, with enhanced activity at low-light conditions in August and September (Fig. 3C). The simulated OCS uptake shows good agreement at times of high light (Fig. 3A) but is underestimated compared with the observed fluxes, especially at times of low light and at night (Fig. 3B). This highlights the need for model refinements, such as using OCS fluxes to constrain stomatal conductance at night.

Previous laboratory studies had proposed that OCS fluxes should scale directly with stomatal conductance (32, 33); however, this is the first evidence to our knowledge demonstrating this relationship in a forest ecosystem. We find, from the observed nocturnal uptake of OCS by the canopy, strong evidence for, and potential quantification of, incomplete stomatal closure at night. The results support the view that we can use the OCS flux as a means to measure the stomatal conductance independently of the water vapor flux, providing a major advance in our capability to assess ecosystem response to environmental forcing, in a simple model framework.

Normalized Flux of OCS and CO₂. We define the flux per mole in air as \(F_X = F_X/X \) (units: mol·m⁻²·s⁻¹), where \(F_X \) represents the observed flux of OCS, CO₂, or GEP and \(X \) is the ambient mole fraction of OCS or CO₂ in dry air. When adjusted for ambient temperature and pressure, this is comparable to the flux per unit molecule (units: m·s⁻¹). For periods when the canopy takes up OCS, the flux per mole represents the apparent canopy conductance of OCS that includes the stomatal, boundary layer, and
internal leaf conductances in series (following equation 3 in ref. 4). We observe that the ratio of the flux per mole of OCS (fOCS) to the gross ecosystem photosynthesis per mole of atmospheric CO2 (fGEP), the fOCS/fGEP ratio, varied through the season, with relatively high values in May and November (greater relative OCS uptake) decreasing to a (negative) minimum in July (due to OCS emission) (Table S1). The daytime fOCS/fGEP ratio increased with air temperature to 24 °C before decreasing at higher temperatures (Fig. 2C), suggesting a physiological optimum. The fOCS/fGEP ratio was not constant with PAR, with the highest values at times of low light, early and late in the day (Fig. 2D).

If we assume that changes in soil flux are small across the day compared with the vegetative uptake of OCS, fOCS/fGEP may be compared with the leaf-scale relative uptake (LRU), which can be measured using leaf chambers. Leaf chamber studies reported LRU values of 0.9–1.9 for various light conditions (8). We calculate a mean daytime fOCS/fGEP ratio for air temperatures above 14 °C (i.e., times of full canopy) of 1.4 ± 0.3, within the range of the previous values. The variations in apparent flux ratio are somewhat more complex than commonly assumed, due to the strong light dependence. Nevertheless, they can be well represented in simulations of SiB3 modified to include soil and canopy exchange of OCS (4) (Fig. 3).

Application of OCS Fluxes to Estimation of GEP. Ecosystem-scale fluxes of OCS have been proposed as a means to directly determine the photosynthetic uptake of carbon in the biosphere, independent of soil and plant respiration (1, 13, 14, 19). However, for this approach to work as proposed, a number of requirements must be met, many of which are not realized year-round at Harvard Forest. These conditions include the following: (i) fOCS should be unidirectional (i.e., no OCS emission). We observed net OCS emission at times of ecosystem stress. (ii) Nighttime uptake of OCS should be negligible or relatively constant and quantifiable. We found nighttime uptake varies throughout the year and accounts for ~28% of the annual OCS uptake. (iii) The LRU of OCS/CO2 for the ecosystem type should be known. Our study shows that the ecosystem fOCS/fGEP, as related to LRU, is not constant but may be predicted, with observed values falling within the reported range of LRU values, provided that environmental conditions are restricted to air temperature between 14 °C and 28 °C (Fig. 2B), PAR > 600 μE·m−2·s−1 (Fig. 2D), times of full canopy and average soil moisture.

In view of these limitations, we tested the applicability of OCS for the approximation of GEP (GEPOCS) during ideal conditions (high illumination with moderate temperature and soil moisture) in September 2011 (LRU = fOCS/fGEP = 1.5 ± 0.5; Fig. 4). Using the mean LRU of 1.5 calculated for September, the total daily sum of GEP OCS and GEP CO2 agrees to within 3.5%; in good agreement and yet again during senescence in November. Heat stress may have been a determining factor in the observed OCS emission in summer, which was strongly enhanced at air temperature above 21 °C. During July 19–31, OCS emission increased with rising vapor pressure deficit (VPD) and bulk sap flow rate for maple trees (Fig. S3). The peak fOCS (+26.3 ± 17.3 pmol·m−2·s−1) coincided with a slight depression in stomatal conductance in the afternoon. In the absence of OCS emission from the ecosystem, the expected daytime net OCS flux due to hydrolysis by CA (based on June and August peak OCS ecosystem uptake) should have been around ~30 pmol·m−2·s−1, and hence, the observed net flux of +20 pmol·m−2·s−1 in late July could correspond to a maximum gross emission by the responsible mechanisms of 50 pmol·m−2·s−1 at midday. A recent study reported OCS emissions from temperature-stressed soils and senescent wheat at harvest time (8, 20). The
metabolism of sulfur containing amino acids, which increases with temperature and plant stress, may lead to OCS production (8) in a similar manner to CO (34) and CH4 production (35) from thermal degradation. However, the emission observed here occurred at temperatures much lower than in the wheat field study. Nighttime OCS emission peaked in August (Fig. 1B), when CO2 respiration was greatest, indicating that there is also a different, light-independent emission mechanism, possibly associated with decomposition.

In early November, OCS emissions of -5 pmol m-2 s-1 were observed briefly during the leaf senescence of the red oak trees. It is possible this emission occurred through a process similar to that observed during wheat senescence in Oklahoma (8). High surface soil temperature was also implicated as a source of OCS in that study. However, the high soil temperature observed in Oklahoma (45 °C) was not reached at Harvard Forest because the canopy shielded the forest floor from direct light, and there is no correlation of OCS emission with soil temperature in November. Therefore, we suspect that the source of OCS may have been within the senescent canopy or from freshly fallen leaves in the litter layer on the forest floor.

Because the air temperature at Harvard Forest has warmed 1.5 °C over the past 50 years (36, 37) with increasingly large interannual variability, drought and heat stress events may increase in frequency (38). Our results suggest that climate change may shift the balance between OCS uptake and emission processes at Harvard Forest and in similar terrestrial ecosystems, leading to changes in the global OCS budget.

Conclusions

Our year-long measurements at Harvard Forest demonstrate that OCS flux observations provide quantitative, independent measures of metabolic activity and biophysical properties of the forest canopy at the ecosystem scale. We observed net uptake of OCS totaling 1.36 ± 0.01 mol OCS per ha per y (43.5 ± 0.5 g S per ha per y), predominantly in the daytime (72%), with the balance at night attributed to soil consumption and to vegetative uptake of 0.22 mol OCS per ha per y. OCS flux was found to be bidirectional, with net emission during very hot, dry conditions and when vegetation senesced in autumn.

Uptake of OCS by a forest canopy is regulated by stomatal conductance, mesophyll conductance, and the activity of carbonic anhydrase, acting in series. At times of peak carbon uptake (full canopy, high illumination, and adequate soil moisture), OCS fluxes are directly proportional to photosynthetic carbon flux, with minor contributions from soils and other processes. However, because OCS uptake does not depend on light levels and can occur at night, the leaf scale relative uptake (\(\text{OCS}_{\text{leaf}}/\text{GEP}\)) has systematically higher values at dawn and dusk than at midday and, likewise, spring and fall versus summer.

We found that daytime OCS uptake was well simulated by the Simple Biosphere model (SiB3), using a basic, low-dimensional representation of OCS metabolism by plants. Thus, the observations can quantitatively constrain the aggregated functioning of the photosynthetic apparatus, at ecosystem scale, in the model framework. SiB3 underestimated uptake of OCS at times of low light and at night and did not account for production processes observed under stress conditions and during senescence. Refinement of the model is needed to account for these features, but these influences on total fluxes are relatively modest.

We conclude that OCS fluxes provide a powerful means for quantitatively measuring the large-scale photosynthetic activity of the terrestrial biosphere. By using a proper model formulation, OCS flux measurements over a forest allow us to directly observe and quantify the mechanisms that mediate temporal changes and spatial heterogeneity of canopy gas exchange of CO2 and H2O at the ecosystem scale.

Methods

A tunable infra-red laser direct absorption spectrometer (TILDAS; Aerodyne Research Inc.) was used to measure atmospheric mixing ratios and derive gradients and fluxes of carbonyl sulfide and water vapor at 2,048,495 cm-2 and 2,048,649 cm-2, respectively. Mixing ratios of OCS and H2O at a frequency of 4 Hz for eddy covariance flux (\(\text{eOCS}\)). August 2011 to December 2011) or 1 Hz for gradient flux (\(\text{gOCS}\). January 2011 to August 2011) were calculated using TDL Wintel software (Aerodyne Research Inc.). The 1r Instrumentation section was typically 14 ppt at 4 Hz, averaging down to <1 ppt at 60 s. The sensor is a further development of earlier instruments (17, 18). More details about the measurement technique and associated instrumental tests and the theory behind the flux calculations are provided in Supporting Information and Figs. S4-S7. Tests were conducted to ensure continuity of measurement techniques. A comparison of the OCS mixing ratios (TILDAS) observed at the same time as National Oceanic and Atmospheric Administration (NOAA) flask samples is shown in Fig. S1.

Measurements were made at the Environmental Measurement Site (EMS) at Harvard Forest, Petersham, MA (42.54°N, 72.17°W, elevation 340 m). The CO2 flux has been measured at this Long-Term Ecological Research (LTER) site since 1990 (24). Details about the site, environmental conditions, and ancillary measurements during the study period are described in Supporting Information. Environmental conditions for the study were typical of New England. Up to 75 cm of snow accumulated between January and April in 2011. The air temperature ranged from -28 °C in January to 35 °C in July. At Harvard Forest, conifer trees are generally not active when the air temperature is consistently below 0 °C (39). The CO2 flux from soil respiration depends mainly on microbial activity and CO2 diffused through the snowpack, with increased exchange from wind pumping. Microbial activity continued through the winter as the soil temperature was partially shielded from the low air temperature by the insulating snow pack (40) before the frost depth extended down to 10 cm into the soil in early March. Bud break was observed for deciduous species around May 5, and senescence began late in October. Prolonged power loss resulted from damage to power lines and damage to electronic equipment due to lightning on May 28. Because no OCS fluxes were measured during the first 2 wk of May and again the first 2 wk of June, the mean uptake for both May and June was based only on measurements during the last half of each month.

There was less than 60 mm precipitation during June and July, and this precipitation was concentrated into four short events. Prolonged high temperature (>30 °C) affected the site in mid-July, resulting in low soil moisture in the area. Storms arrived in early August, bringing prolonged and heavy precipitation and increasing soil moisture. Hurricane Irene on August 28 caused extensive flooding in the region. October was unreasonably warm, and leaves were still on trees when a snowstorm on October 29 produced 32 cm of snow, partially covering the area. The snowpack was cut at the site and flooding in the area on thaw. Although soils were dry in July, these large moisture events resulted in greater cumulative precipitation for 2011 (1,635 mm) than the 10-y average for the site (1,226 mm).

OCS fluxes derived during times of low turbulence (u* < 0.17 m s-1) and during periods of precipitation were removed (21), leaving valid data covering 34% of the 30-min periods over the entire year, slightly less than the 45% reported by Urbanski et al. (24) as the mean valid CO2 flux data points for the years 1992-2004. The valid data (approximately six thousand 30-min values) were uniformly distributed over the year, and every hour for each composite month throughout the year had valid OCS flux data, allowing the yearly flux of OCS to be calculated for 2011 as -136 pmol m-2 s-1, corresponding to a net uptake of 43.5 ± 0.5 g S (as OCS) per ha per y or 16.3 ± 0.1 g C (as CO2) per ha per y. This flux is an estimate of the observed range of net CO2 uptake of 1.0–4.7 Mg C per ha per y for the period 1992–2004 (25). Overall, the OCS fluxes had a greater relative uncertainty than fluxes of CO2 reflecting a combination of both a less precise measurement of the OCS flux (the gradient flux calculated OCS flux has more uncertainty than the eddy covariance calculated OCS flux) and more variability of the actual daytime OCS fluxes.

The Simple Biosphere Model version 3 (SiB3), adapted to include OCS, was run using 2011 meteorology data from Harvard Forest (41). SiB3 links stomatal conductance (both C3 and C4) to the energy budget (42, 43) and incorporates satellite-specified phenology (44). Stomatal conductance, determined by the Ball-Berry equation (45), has a direct dependence on relative humidity and CO2 concentration and indirect dependence on soil water, temperature, light, and humidity through the assimilation term. Both leaf and soil uptake of OCS reacts with C4 (SiB3) and H2O (as

ACKNOWLEDGMENTS. We thank Mark Vancsoy for help with the long-term observation of OCS at Harvard Forest and for flask sampling. Carolina Siso for analysis at National Oceanic and Atmospheric Administration (NOAA), Brad Hall for OCS standardization at NOAA, Ryan McGovern at
Aerodynamic for instrumental repairs, and Richard Wehr for helpful discussion. The initial concept and deployment started as part of US Department of Energy (DOE) Small Business Innovation Research DE-SC0001801. Funding for flask analysis was provided in part by NOAA Climate Program Office’s Atmospheric Chemistry, Carbon Cycle and Climate (AC4) Program. EMS tower and CO2 flux measurements are a component of the Harvard Forest Long-Term Ecological Research site supported by the National Science Foundation (NSF) and additional support from the National Aeronautics and Space Administration (NASA). DOE, P.I.T. was supported by a Charles Bullard fellowship at Harvard University during the writing of this manuscript. I.T.B. was supported by the NSF Science and Technology Center for Multi-scale Modeling of Atmospheric Processes, managed by Colorado State University under Cooperative Agreement ATM-0425247.