Measurement of the t[bar over t] production cross section in the tau + jets channel using the ATLAS detector

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>The ATLAS Collaboration et al. “Measurement of the t[bar over t] Production Cross Section in the Tau + Jets Channel Using the ATLAS Detector,” The European Physical Journal C 73.3 (2013): n. pag. © 2013 CERN for the benefit of the ATLAS collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1140/epjc/s10052-013-2328-7</td>
</tr>
<tr>
<td>Publisher</td>
<td>Springer-Verlag</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sat Nov 24 13:55:51 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/105491</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution 4.0 International License</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/4.0/</td>
</tr>
</tbody>
</table>
Measurement of the $t\bar{t}$ production cross section in the tau + jets channel using the ATLAS detector

The ATLAS Collaboration

CERN, 1211 Geneva 23, Switzerland

Abstract: A measurement of the top quark pair production cross section in the final state with a hadronically decaying tau lepton and jets is presented. The analysis is based on proton–proton collision data recorded by the ATLAS experiment at the LHC, with a centre-of-mass energy of 7 TeV. The data sample corresponds to an integrated luminosity of 1.67 fb$^{-1}$. The cross section is measured to be $\sigma_{t\bar{t}} = 194 \pm 18 \text{ (stat.)} \pm 46 \text{ (syst.) pb}$ and is in agreement with other measurements and with the Standard Model prediction.

1 Introduction

Top quark pairs ($t\bar{t}$) are produced in abundance at the Large Hadron Collider (LHC) due to the high centre-of-mass energy of 7 TeV. The large sample of $t\bar{t}$ events collected with the ATLAS detector makes it possible to study experimentally challenging decay channels and topologies. This letter describes a measurement of the $t\bar{t}$ production cross section. The final state studied here consists of a hadronically decaying tau lepton (τ_{had}) and jets, corresponding to the $t\bar{t} \rightarrow [b\tau_{\text{had}}\nu_{\tau}][bq]$ decay, where b and q are used to denote b-quarks and lighter quarks, respectively. Such an event topology with a hadronically decaying tau lepton corresponds to approximately 10% of all $t\bar{t}$ decays [1].

A $t\bar{t}$ cross-section measurement in the final state with tau leptons makes it possible to probe flavour-dependent effects in top quark decays. It is also relevant to searches for processes beyond the Standard Model, where $t\bar{t}$ events with tau leptons in the final state are a dominant background. This measurement is particularly important for hypothetical charged Higgs boson production [2–5] in top quark decays, where the existence of a charged Higgs boson would lead to an enhancement in the cross section for the considered $t\bar{t}$ final state. The measurement presented here is complementary to the previously published tau + lepton (electron or muon) channel measurement [6]. The most recent cross-section measurements of the tau + jets decay channel have been performed by the CDF and D0 collaborations in proton–antiproton collisions at $\sqrt{s} = 1.96$ TeV [7, 8]. This is the first measurement reported in this specific channel at the LHC.

In this analysis, events with at least five jets are selected, where two of the jets are identified as having originated from b-quarks. After identifying the two jets likely to come from the hadronic decay of one of the top quarks, one of the remaining jets is selected as the τ_{had} candidate from the other top quark. The τ_{had} contribution is separated from quark- or gluon-initiated jets with a one-dimensional fit to the distribution of the number of tracks associated with the τ_{had} candidate. Since the τ_{had} decays preferentially to one or three charged particles (and other neutral decay products), this variable provides good separation between hadronically decaying tau leptons and jets, as the latter typically produce a large number of charged particles. The main backgrounds to the $t\bar{t}$ signal are multijet events, $t\bar{t}$ events with a different final state or signal events where the wrong jet is chosen as the τ_{had} candidate. A small contribution from single-top and $W^+ +$ jets events is also present. The distributions for the backgrounds used in the fit are obtained with data-driven methods.

2 The ATLAS detector

The ATLAS detector [9] is a multipurpose particle physics detector with a forward-backward symmetric cylindrical geometry and a near-4π coverage in solid angle. The inner...
of simulated events are also used to estimate the small contributions from $W + $jets, $Z + $jets, single-top-quark and diboson events, as described in Ref. [19]. The generated events were processed through the full ATLAS detector simulation using GEANT4 [20, 21], followed by the trigger and offline reconstruction. The distribution of the number of pile-up events (i.e., collisions in the same, or nearby, bunch crossing as the hard-scattering event) is adjusted to match the scattering multiplicity measured in the data.

4 Event selection

Jets are reconstructed from clusters of calorimeter cells [22] using the anti-k_t algorithm [23, 24] with a radius parameter $R = 0.4$. The jets are calibrated using transverse momentum- and η-dependent corrections obtained from simulation and validated with collision data [25]. Candidate events are required to contain at least five jets with a transverse momentum (p_T) larger than 20 GeV and $|\eta| < 2.5$.

The identification of jets originating from b-quarks is performed using algorithms that combine secondary vertex properties and track impact parameters [26]. The algorithm identifies b-jets with an average efficiency of 60% and provides a light-quark jet rejection factor of about 340 in $t\bar{t}$ topologies. The likelihood of misidentifying a $t\bar{t}$ as a b-jet in a $t\bar{t}$ event is approximately 5%. The two jets with the highest b-tag probability are chosen as the event b-candidates; events with fewer than two b-jets are rejected.

The magnitude of the missing transverse energy (E_T^{miss}) is reconstructed from energy clusters in the calorimeters. The selection efficiency for the $t\bar{t} \rightarrow t_\text{had} + $jets signal is derived from Monte Carlo (MC) simulations. The MC@NLO v4.01 [11] generator, with the parton distribution function (PDF) set CT10 [12], is used for the $t\bar{t}$ signal. The theoretical prediction of the $t\bar{t}$ cross section for proton–proton collisions at a centre-of-mass energy of $\sqrt{s} = 7$ TeV is $\sigma_{t\bar{t}} = 167^{+17}_{-18}$ pb for a top quark mass of 172.5 GeV. It has been calculated at approximate next-to-next-to-leading order (NNLO) in QCD with HATHOR 1.2 [13] using the MSTW2008 90% confidence level NNLO PDF sets [14], incorporating PDF and α_S uncertainties according to the MSTW prescription [15], and cross-checked with the next-to-leading-order + next-to-next-to-leading-log calculation of Cacciari et al. [16] as implemented in Top++ 1.0 [17]. Tau lepton decays are modelled with TAUOLA [18].

3 Data and simulation samples

The data used in this analysis were collected during the first half of the 2011 data-taking period and correspond to a total integrated luminosity of $L = 1.67$ fb$^{-1}$. The data sample was selected with a b-jet trigger that required at least four jets identified with $|\eta| < 3.2$ and a transverse energy (E_T) above 10 GeV. Two of these jets were required to be identified as b-jets using a dedicated high-level-trigger b-tagging algorithm [10]. This trigger was enabled for only part of the 2011 data-taking period and is therefore the limiting factor in determining the integrated luminosity of the dataset used.

The selection efficiency for the $t\bar{t} \rightarrow t_\text{had} + $jets signal is derived from Monte Carlo (MC) simulations. The MC@NLO v4.01 [11] generator, with the parton distribution function (PDF) set CT10 [12], is used for the $t\bar{t}$ signal. The theoretical prediction of the $t\bar{t}$ cross section for proton–proton collisions at a centre-of-mass energy of $\sqrt{s} = 7$ TeV is $\sigma_{t\bar{t}} = 167^{+17}_{-18}$ pb for a top quark mass of 172.5 GeV. It has been calculated at approximate next-to-next-to-leading order (NNLO) in QCD with HATHOR 1.2 [13] using the MSTW2008 90% confidence level NNLO PDF sets [14], incorporating PDF and α_S uncertainties according to the MSTW prescription [15], and cross-checked with the next-to-leading-order + next-to-next-to-leading-log calculation of Cacciari et al. [16] as implemented in Top++ 1.0 [17]. Tau lepton decays are modelled with TAUOLA [18].

axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r, ϕ) are used in the transverse (x, y) plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as $\eta = - \ln \tan(\theta/2)$. The variable ΔR is used to evaluate the distance between objects, and is defined as $\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$.

\sum
are added vectorially, give the highest \(p_T \) sum. The remaining jet with the highest \(p_T \), excluding the remaining \(b \)-candidate, is selected as the \(\tau_{\text{had}} \) candidate. Events where the \(\tau_{\text{had}} \) candidate \(p_T \) is below 40 GeV are rejected.

The main contributions to the selected \(\tau_{\text{had}} \) candidates in the signal region come from the signal (\(\tau_{\text{had}} \) from \(\bar{t}t \) events), electrons from \(\bar{t}t \) events and misidentified jets from \(\bar{t}t \), single-top-quark production, \(W + \) jets and multijet events. The contributions from \(Z/\gamma^* + \) jets and diboson processes are negligible.

5 Data analysis

The majority of \(\tau_{\text{had}} \) decays are characterised by the presence of one or three charged hadrons in the final state, which can be reconstructed as charged particle tracks in the inner detector. The number of tracks (\(n_{\text{track}} \)) originating from the interaction point associated with a \(\tau_{\text{had}} \) candidate is used to separate the \(\tau_{\text{had}} \) contribution from the misidentified jet background.

All selected tracks with \(p_T > 1 \) GeV located in a core region spanning \(\Delta R < 0.2 \) around the jet axis are counted. To increase the discriminating power, tracks in the outer cone \(0.2 < \Delta R < 0.6 \) are also counted, using a variable \(p_T \) requirement that is dependent on both the \(\Delta R \) of the outer track and the \(p_T \) of the core tracks. This variable \(p_T \) requirement is designed to reduce the contribution from pile-up and underlying event tracks, and is explained in Ref. [30]. The separation power of the \(n_{\text{track}} \) variable is illustrated in Fig. 1 where a comparison of the \(n_{\text{track}} \) distribution is shown for \(\tau_{\text{had}} \), electrons and misidentified jets from multijet events.

To extract the signal from the \(n_{\text{track}} \) distribution, the data sample is fitted with three probability density functions (templates): a \(\text{tau/electron} \) template, a \(\text{gluon-jet} \) template and a \(\text{quark-jet} \) template. The \(\tau_{\text{had}} \) component from \(\bar{t}t \) events constitutes the signal in the event sample. Real electrons from \(\bar{t}t \) events (either prompt or from leptonic tau decays) which failed to be rejected by the electron veto also contribute significantly to the event sample. The electron and \(\tau_{\text{had}} \) templates are combined into a single \(\text{tau/electron} \) template to ensure a stable fit, using MC predictions to determine their relative contributions. The \(\text{tau/electron} \) template is obtained from simulated \(\bar{t}t \) events. The small expected contributions to the real \(\text{tau/electron} \) component of the fit from single-top-quark and \(W + \) jets events do not change the shape of the template.

The remaining significant contributions come from misidentified jets, and are separated into two templates. The \(\text{gluon-jet} \) template describes the QCD multijet processes which are dominated by gluon-initiated jets, and the \(\text{quark-jet} \) template describes the remaining processes (\(\bar{t}t \), single-top quark and \(W + \) jets) that are enriched in quark-initiated jets.

The \(\text{gluon-jet} \) template is determined using a sideband region where the \(S_{E_T^{\text{miss}}} \) requirement is changed to \(3 < S_{E_T^{\text{miss}}} < 4 \). This selection greatly enhances the contribution from multijet events, reducing other contributions (e.g. from \(\bar{t}t \) events) to less than 1 %. The regions defined by the selection \(2 < S_{E_T^{\text{miss}}} < 3 \) and \(4 < S_{E_T^{\text{miss}}} < 5 \) are also used to study any correlations between the \(S_{E_T^{\text{miss}}} \) criteria and the \(n_{\text{track}} \) distribution.

The \(\text{quark-jet} \) template is obtained from a \(\bar{t}t \) control sample where the \(\tau_{\text{had}} \) candidate is replaced by a muon candidate. The reconstructed muon [29] is required to have \(p_T > 20 \) GeV, \(|\eta| < 2.5 \) and no jet within a distance \(\Delta R = 0.4 \). The requirement on the number of non-\(b \)-tagged jets is changed from three to two as the jet corresponding to the \(\tau_{\text{had}} \) is now replaced by a muon. The other selection requirements are the same as for the signal region. This isolates \(\bar{t}t \) events with very high purity; the contribution from backgrounds is estimated from MC predictions to be at the 5 % level, and consists mainly of single-top-quark and \(W + \) jets events. The two highest-\(p_T \) jets that are not identified as \(b \)-jet candidates are selected as \(\tau_{\text{had}} \) candidates. The template is corrected using MC simulations for differences in the transverse momentum distribution between the signal region and the control sample, and for the expected contribution to the control sample from \(\bar{t}t \) dilepton events (\(\bar{t}t \rightarrow \mu + \tau_{\text{had}} + X, \bar{t}t \rightarrow \mu + e + X \)).

6 Results

An extended binned-likelihood fit is used to extract the different contributions from the \(n_{\text{track}} \) distribution. To improve the fit stability, a soft constraint is applied to the...
ratio of quark-jet events to tau/electron events, which are dominated by the same process ($t\bar{t}$ events). The constraint, based on MC predictions, is a Gaussian with a width of 19% of its central value. This width was estimated based on studies of the associated systematic uncertainties using the same methodology as described in Sect. 7. The statistical uncertainties on the fit parameters are calculated using the shape of the fit likelihood. The systematic uncertainties on the shapes of the templates are propagated using a pseudo-experiment approach, taking into account the bin-by-bin correlations. This yields a final number of tau/electron events of 270 ± 24 (stat.) ± 11 (syst.).

The fit results are shown in Fig. 2. A comparison between the fit results, and the expected event yields from the MC predictions is presented in Table 1. The numbers are in good agreement.

To extract the number of signal events, predictions from simulation are used to subtract the backgrounds from $W +$ jets and single-top events (9 ± 5 and 12 ± 2, respectively) from the fitted number of tau/electron events. The number is then scaled by the expected ratio, $N_s/(N_s + N_b)$, of τ hadrons and electrons passing the selection in the $t\bar{t}$ sample. This ratio is estimated from MC simulation to be 0.78 ± 0.03 (stat.) ± 0.03 (syst.). This yields a final number of observed signal events of $N_s = 194 \pm 18$ (stat.) ± 11 (syst.).

The cross section is obtained using $\sigma_{t\bar{t}} = N_s / (L \cdot \epsilon)$. The efficiency ($\epsilon$) is estimated from MC simulation to be $(6.0 \pm 1.4) \times 10^{-4}$. It includes the branching fractions for the various $t\bar{t}$ decays and the acceptance, and assumes $\mathrm{Br}(t\bar{t} \rightarrow \tau \text{had} + \text{jets})$ to be 0.098 ± 0.002 [1]. The efficiency is corrected for a 13% difference between MC simulation and data in the trigger and b-tagging efficiencies [26]. The method used for obtaining the uncertainty on the cross section is detailed in Sect. 7.

![Fig. 2](image-url) The n_{track} distribution for τ hadron candidates after all selection cuts. The black points correspond to data, while the solid black line is the result of the fit. The red (dashed), blue (dotted) and magenta (dash-dotted) histograms show the fitted contributions from the tau/electron signal, and the gluon-jet and quark-jet backgrounds, respectively.
uncertainties considered are associated with the jet energy scale, jet energy resolution, \(b\)-tagging efficiency, trigger efficiency and the \(E_T^{\text{miss}}\) calculation [25, 26]. The uncertainty due to mismodelling of the lepton veto is estimated using the uncertainties on the muon and electron reconstruction efficiencies determined from independent data samples, and is found to be negligible.

To obtain the uncertainty on the fit results, variations are applied to the templates to describe various systematic effects. As the \(\tau/electron\) template is taken directly from MC-simulated \(t\bar{t}\) events, the systematic uncertainties on this template are taken from estimates of the mismodelling of the simulation. The dominant contributions come from variations in the amount of ISR/FSR in the simulation (1 %), the modelling of the pile-up (1 %), and the statistical uncertainties (1 %). Uncertainties on the track reconstruction efficiency, jet energy scale, and the ratio of \(\tau\) to electrons are found to be negligible. The \(quark-jet\) template is obtained from a \(\mu +\) jets control sample of \(t\bar{t}\) events in data. The dominant contributions to the uncertainty come from the statistical uncertainties (4 %), the difference in shape between the \(\mu +\) jets template and the expected \(quark-jet\) distribution, estimated from MC samples (2 %), and the MC-based subtraction of the dilepton contribution (1 %). The uncertainty on the MC-based kinematic correction is found to be negligible. The \(gluon-jet\) template is derived from a background-dominated sideband region with small values of \(S_{E_T^{\text{miss}}}\). The two sources of uncertainties are the dependence of the template on the \(S_{E_T^{\text{miss}}}\) criterion of the control region, obtained by varying the \(S_{E_T^{\text{miss}}}\) requirement (1 %), and the statistical uncertainty of the control region (1 %). The total systematic uncertainty on the fit is found to be 4 %.

The uncertainty on the luminosity is calculated to be 3.7 % as described in Ref. [38]. The total systematic uncertainty on the cross section is 24 %.

8 Conclusions

This letter presents a measurement of the top quark pair production cross section in the final state corresponding to the \(t\bar{t}\rightarrow[b\bar{n}_{\text{had}}\nu_T][bqq]\) decay. The measurement uses a dataset corresponding to an integrated luminosity of 1.67 fb\(^{-1}\) of proton–proton collision data at a centre-of-mass energy of 7 TeV recorded by the ATLAS experiment at the LHC. The signal has been extracted by fitting the number of tracks associated with tau lepton candidates using templates derived from simulation for the \(t\bar{t}\) signal and from the data for the backgrounds.

The \(t\bar{t}\) production cross section is measured to be \(\sigma_{t\bar{t}} = 194 \pm 18 \, \text{(stat.)} \pm 46 \, \text{(syst.)} \, \text{pb}\). This result is compatible with the highest precision ATLAS measurements [39, 40], and with the result of 186 \pm 13 \, \text{(stat.)} \pm 20 \,(\text{syst.}) \pm 7 \,(\text{lum.)} \, \text{pb} \) obtained in the complementary tau + lepton (electron or muon) channel [6]. It is also in good agreement with the theoretical prediction of 167\(^{+17}_{-18}\) pb.

Acknowledgements

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERSYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access

This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
References

7. V.M. Abazov et al. (D0 Collaboration), Phys. Rev. D 82, 071102 (2010)

The ATLAS Collaboration

137Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
138Department of Physics, University of Washington, Seattle WA, United States of America
139Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140Department of Physics, Shinshu University, Nagano, Japan
141Department of Physics, Simon Fraser University, Burnaby BC, Canada
142Department of Physics, University of Wisconsin, Madison WI, United States of America
143SLAC National Accelerator Laboratory, Stanford CA, United States of America
144(a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
145(a) Department of Physics, University of Johannesburg, Johannesburg; (b) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
146(a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
147Physics Department, Royal Institute of Technology, Stockholm, Sweden
148Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
149Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
150School of Physics, University of Sydney, Sydney, Australia
151Institute of Physics, Academia Sinica, Taipei, Taiwan
152Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
153Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
154Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
155International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
156Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158Department of Physics, University of Toronto, Toronto ON, Canada
159(a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
160Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
161Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
162Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
163Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
164(a) INFN Gruppo Collegato di Udine, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
165Department of Physics, University of Illinois, Urbana IL, United States of America
166Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
167Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CN), University of Valencia and CSIC, Valencia, Spain
168Department of Physics, University of British Columbia, Vancouver BC, Canada
169Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
170Department of Physics, University of Warwick, Coventry, United Kingdom
171Waseda University, Tokyo, Japan
172Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
173Department of Physics, University of Wisconsin, Madison WI, United States of America
174Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
175Fachbereich Physik, Bergische Universität Wuppertal, Wuppertal, Germany
176Department of Physics, Yale University, New Haven CT, United States of America
177Yerevan Physics Institute, Yerevan, Armenia
178Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

a Also at Department of Physics, King’s College London, London, United Kingdom
b Also at Laboratorio de Instrumentacao e Fisica Experimental de Particulas - LIP, Lisboa, Portugal
c Also at Faculdade de Ciencias and CFNUL, Universidade de Lisboa, Lisboa, Portugal
d Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom