Geomorphologic controls on elevational gradients of species richness

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Bertuzzo, Enrico et al. “Geomorphologic Controls on Elevational Gradients of Species Richness.” Proceedings of the National Academy of Sciences 113.7 (2016): 1737–1742. © 2015 National Academy of Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1073/pnas.1518922113</td>
</tr>
<tr>
<td>Publisher</td>
<td>National Academy of Sciences (U.S.)</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Jul 28 18:01:42 EDT 2017</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/106297</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Geomorphic controls on elevational gradients of species richness

Enrico Bertuzzoa,1, Francesco Carraraa,b, Lorenzo Maric, Florian Altermattd,e, Ignacio Rodriguez-Iturbef, and Andrea Rinaldoa,b,1

aLaboratory of Ecolohydrology, École Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland; bRalph M. Parsons Laboratory for Environmental Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; cDipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy; dDepartment of Aquatic Ecology, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; eDepartment of Evolutionary Biology and Environmental Studies, University of Zürich, 8057 Zürich, Switzerland; fDepartment of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544; and 1Dipartimento Ingegneria Civile Edile ed Ambientale, Università di Padova, 35131 Padova, Italy

Contributed by Andrea Rinaldo, December 23, 2015 (sent for review October 7, 2015; reviewed by Evan P. Economo and Pablo A. Marquet)

Elevational gradients of biodiversity have been widely investigated, and yet a clear interpretation of the biotic and abiotic factors that determine how species richness varies with elevation is still elusive. In mountainous landscapes, habitats at different elevations are characterized by different areal extent and connectivity properties, key drivers of biodiversity, as predicted by metacommunity theory. However, most previous studies directly correlated species richness to elevational gradients of potential drivers, thus neglecting the interplay between such gradients and the environmental matrix. Here, we investigate the role of geomorphology in shaping patterns of species richness. We develop a spatially explicit zero-sum metacommunity model where species have an elevation-dependent fitness and otherwise neutral traits. Results show that ecological dynamics over complex terrains lead to the null expectation of a hump-shaped elevational gradient of species richness, a pattern widely observed empirically. Local species richness is found to be related to the landscape elevational connectivity, as quantified by a newly proposed metric that applies tools of complex network theory to measure the closeness of a site to others with similar habitat. Our theoretical results suggest clear geomorphic controls on elevational gradients of species richness and support the use of the landscape elevational connectivity as a null model for the analysis of the distribution of biodiversity.

Significance

How biodiversity changes with elevation has long attracted the interest of researchers because it provides key clues to how biota respond to geophysical drivers. Experimental evidence reveals that biodiversity often peaks at intermediate elevations, and yet a clear explanation is still elusive. Here, we investigate a factor that has been overlooked to date: Mountainous landscapes hold fractal properties with elevational bands forming habitat patches that are characterized by different areal extent and connectivity, well-known drivers of biodiversity. When the geometry of real landscapes is taken into account, ecological dynamics naturally produce mid-peak elevational gradients of species richness. These results further biodiversity theory and our understanding of the distribution of life on Earth.

References: E.P.E., Okinawa Institute of Science and Technology Graduate University; and P.A.M., Catholic University of Chile.

The authors declare no conflict of interest.

Freely available online through the PNAS open access option.

1To whom correspondence may be addressed. Email: enrico.bertuzzo@epfl.ch or andrea.rinaldo@epfl.ch.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518922113/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1518922113

PNAS | February 16, 2016 | vol. 113 | no. 7 | 1737–1742
midelevations (Fig. 1 and ref. 25). This pattern is ubiquitous in landscapes shaped by fluvial erosion when a sufficiently large region rather than a single slope or mountain is considered, and the pattern is altered only if large areas outside runoff-producing zones (e.g., large plains) are included in the domain (Supporting Information). This pattern is often overlooked (e.g., refs. 1 and 4) because the mountain-cone analogy suggests a monotonically decreasing distribution of elevation. However, mountains are not cones (26) but complex fractal structures. The area of available habitat within a given elevational band may have a direct effect on the diversity of the regional community it hosts [γ-diversity (8, 13, 22, 27, 28)], as predicted by the species–area relationship (29). The area of available habitat may also have an indirect effect on the local species richness [diversity of equal-area plots (i.e., α-diversity)] because local communities can be assembled from a more diverse regional pool of species that are fit to live at similar elevation (28).

Finally, a feature potentially capable of shaping elevational diversity patterns is the inherent elevational connectivity of fluvial landscapes. When mapping the fitness, assumed to be elevation-dependent, of three hypothetical species with the same niche width but different niche position [the elevation at which fitness is maximum (30)] over a real mountainous landscape, we find that suitable habitat patches for different species feature very different connectivity (Fig. 2). Valleys (low-elevation sites) and mountain tops (high-elevation sites) form fragmented patches nearly isolated from each other, whereas midelevation sites are both more abundant and more interconnected. Habitat size and connectivity are key determinants of extinction and immigration rates, and thus of diversity, as first predicted by the classic theory of island biogeography (31) and later confirmed by many experimental and theoretical studies (e.g., refs. 32–42). It is thus expected that communities at low (high) elevation, being more isolated, exhibit lower species richness than those at midelevation. This effect has already been discussed for mountain tops (4, 31), and yet isolation of valleys has been so far overlooked, and a comprehensive framework to quantify this effect is missing.

Another limitation of previous studies (e.g., refs. 4, 10, 11, and 13) is that the environmental matrix and the elevational gradients were considered disconnected, and movement and dispersal of organisms across space ignored. Indeed, deriving species distribution patterns directly from elevational gradients of potential drivers implicitly requires the assumption of a 1D landscape (Fig. 1B), where all sites at the same elevation share the same characteristics. Such a landscape model is in stark contrast to the complexity of a typical real-life mountainous region (Fig. 1). The hypothesis that the very structure of landscapes can lead to nontrivial diversity patterns, even in the absence of species’ preferential elevation or gradients of productivity and habitat capacity, is tested here. To that end, we simulate ecological dynamics in 3D landscapes using a zero-sum metacommunity model (43, 44) (Materials and Methods). The model has been formalized by invoking the minimum set of assumptions principle. Specifically, the following set of rules has been implemented: (i) individuals of each species have a fitness (i.e., a competitive ability in this context) that depends on elevation, with all other vital rates being the same; (ii) different species have different niche positions but the same niche width (Fig. 2B); (iii) niche positions are uniformly distributed along the elevational range of the domain, so that there is no preferential elevation at the metacommunity scale; (iv) dispersal is isotropic (toward the four nearest-neighbor communities in a regular 2D lattice); and (v) the size of local communities is constant over the entire domain (i.e., constant habitat capacity). The above assumptions could be straightforwardly relaxed to mimic more realistic metacommunities. However, this set of assumptions is specifically designed to provide a null model to single out the effect of geomorphic controls of landscape structure on elevational diversity, while deliberately excluding other possible confounding factors.

In addition to real-life landscapes, we run the zero-sum model over synthetic elevation fields derived from optimal channel networks (OCNs) (Supporting Information), which are topological structures that minimize a functional describing the total energy dissipated along drainage directions by landscape-forming discharges that hierarchically accumulate toward the outlet of the basin. OCNs are known to systematically reproduce all mutually connected scaling exponents of topological and metric landscape features (25, 45) and are exact steady-state solutions to the landscape evolution equation in the small gradient approximation (46). The use of OCNs has a twofold advantage. First, the use of synthetic elevation fields allows generating consistent replicas of fluvial landscapes in the same domain as the minimization process produces dynamically accessible, yet different, stable states endowed with the same statistical features. Second, OCNs allow producing periodic elevation fields and simulating ecological dynamics over a pseudoinfinite domain, thus avoiding edge effects.

Results

Fig. 3 shows elevational gradients of local species richness (α-diversity) resulting from the simulation of the metacommunity model in real mountainous landscapes at two different scales of analysis. Patterns emerging from a landscape derived from an OCN are reported in Fig. 4. Remarkably, species interacting in an elevation field that embeds the complexity of a real fluvial landscape naturally produce a hump-shaped elevational gradient of species richness (Figs. 3 and 4D) even in the absence of gradients of productivity or habitat capacity. Figs. 3 and 4D also reveal that sites at the same elevation can host quite a different number of species depending on their

Fig. 1. Comparison between a real-life elevation field (a fluvial landscape in the Swiss Alps, 50 x 50 km²) (A) and an oversimplified, 1D elevation field (B). (C) Frequency distributions of elevation of the two landscapes. Fig. S1 reports other examples.
connectivity. Such an effect is further highlighted by analyzing local subplots (Fig. 4E). The two quadrants cover very different elevation ranges, and yet they both exhibit similar well-defined midpeak gradients of elevational diversity. Sites at the upper end of the elevational range of the first plot host few species, whereas \(\alpha \)-diversity at similar elevation is much higher in the second plot. This difference can be explained by the different connectivity. Sites at the same elevation represent a local mountain top in the first plot, thus poorly connected with sites characterized by similar elevation, whereas in the second plot, the sites lay in the middle of the elevation range, with multiple connections with similar elevations. Therefore, in such systems elevation alone is a poor predictor of species richness, which is instead controlled by the geomorphic organization of the surrounding habitat.

We have sought a measure to quantify the combined effect of the three geomorphic controls on elevational gradients of species richness without resorting to any particular modeling assumptions. To that end, we apply concepts of complex network theory applied to ecology (35, 38-40, 47). The proposed measure, which we term landscape elevational connectivity (LEC) (Materials and Methods and Fig. 5), quantifies the closeness of a site to all others with similar elevation. Such closeness is computed over a graph whose edges represent connections among sites and whose weights are proportional to the cost of spreading through patches at different elevation. Although LEC simply depends on the elevation field and on the niche width, LEC predicts well (Spearman’s correlation, \(r = 0.79 \)) the \(\alpha \)-diversity simulated by the full meta-community model (Fig. 4). In particular, LEC is able to capture the variability of diversity hosted at the same elevation, as opposed to a simpler predictor like the elevation frequency (\(r = 0.60 \); Fig. 4F). Simulations over different landscapes and with different parameter sets confirm the main results presented herein (Supporting Information).

Discussion

Fluvial networks in runoff-generating areas are naturally fractal (25, 26), owing to the similarity of the networks’ parts with the whole. The networks’ self-similarity leads to self-affine invariance of the elevation fields owing to the relation between slope and cumulative drainage area, a well-known proxy of landscape-forming hydrological
events (Supporting Information). Fluvial landforms thus show deep similarities across many orders of magnitude despite great diversity of their drivers and controls (e.g., relief, exposed lithology, geology, vegetation, or climate) (25). The universality of the main attributes of the fluvial landscape naturally lends itself to the quest for general patterns of the ecological dynamics that such landscapes host (41, 42, 48–54).

The α-diversity map shown in Fig. 4B reveals a clear spatial pattern with valleys and mountain tops characterized by lower species richness. All three geomorphic factors described before simultaneously concur to the formation of such pattern. The first factor is related to the finiteness of the landscape elevational range: sites at midelevation can potentially be colonized by species that live at (and are fit for) higher and lower elevations, whereas sites at the lowest (highest) extreme are only subject to the colonizing pressure from higher (lower) elevations. In addition to this boundary effect, the geomorphic structure of fluvial landscapes results in a midelevation peak in both area and connectivity across the landscape, both of which can promote diversity. We have specifically designed a set of simulations to disentangle the role of these three factors (Supporting Information). Results show that without any of these effects, the model predicts no gradients of diversity. Each geomorphic factor produces, independently or in combination with others, a hump-shaped pattern of species richness. Moreover, the differential elevational connectivity characteristic of fluvial landscapes results in a marked variability of diversity for the same elevation.

The results shown in Figs. 3 and 4 reveal that similar mid-peak elevational gradients of diversity can be observed at different scales of observation even if the domains span different elevational ranges. This pattern is a direct consequence of the self-affine fractal structure of fluvial landscapes that reproduces statistically similar elevational fields (properly rescaled) at every scale of observation. Results also show that, when the scale of observation is enlarged, different hump-shaped patterns are blended together, possibly producing a confounding effect (Fig. 4E), especially if the analysis is limited to the average diversity as a function of elevation. This feature might help in understanding why elevational diversity is often found to be dependent on the scale of observation (10, 11, 15).

As a proof of concept, we have presented results based on nearest-neighbor dispersal to highlight the role of elevational connectivity. Indeed the effect of elevational isolation is expected to be reduced as dispersal limitation decreases because species can overcome elevational constraints with long-distance dispersal (e.g., dispersing from one mountain top to another without going through unfavorable lower elevation habitats). Moreover, we have assumed that the landscape can be uniformly colonized, whereas real-life habitats are often composed by patches with different spatial connectivity and size (33). Spatial and elevational connectivities can interact in a complex ways to shape diversity patterns. The modeling framework proposed can be easily generalized to accommodate both fragmented habitats and generic dispersal kernels, and the framework has the potential to effectively describe how spatial and elevational connectivities shape diversity in complex 3D landscapes.

Our exploration of metacommunity patterns suggests that the specific spatial arrangement of sites at different elevation in fluvial landscapes suffices in inducing mid-peak elevational gradients of species richness without invoking specific assumptions, except that each species is fit for a specific elevation. In this framework, an elevation-dependent fitness applied to a real-life landscape translates into a fragmented habitat map (Fig. 2). Such conceptualization lends itself to the application of classic concepts of metacommunity dynamics (33, 55), according to which habitat size and connectivity are

Fig. 4. Local species richness (α-diversity) patterns resulting from the metacommunity model applied to an elevation field derived from an OCN. (A–C) Maps of the elevation field (A), α-diversity (B), and LEC (Materials and Methods) (C). Color code in B and C goes from blue (low values) to red (high values). (D) α-Diversity as a function of site elevation (gray dots). Symbols are as in Fig. 3. (E) Same as D, where points belonging to the two subplots indicated in A and B are highlighted. (F) LEC (gray dots) and elevation frequency (blue dotted line) as a function of site elevation. (Inset) Relationship between LEC and α-diversity. The replicable domain (an OCN) is obtained by imposing four outlets to otherwise periodic boundaries (Fig. S2). Averages over 500 realizations of the metacommunity model are shown. Parameters are as in Fig. 3. Results for different landscapes and for different parameter sets are reported in Figs. S3–S5.
between sites is smaller than that of the starting point \(z_i\). The blue path travels through sites with elevations more similar to that of the starting point \(z_j\). The red path is longer, and the associated cost \(\sum_{i,j}(z_i - z_j)^2\) is smaller than that of the red path because the blue path travels through sites with elevations more similar to that of the starting point \(z_j\).

LEC. The LEC \(C_i\) of site \(i\) can be expressed as

\[
LEC_i = \sum_{j=1}^{N} C_{ij} \tag{1}
\]

with \(C_{ij}\) being a measure of the closeness of site \(j\) to \(i\) in terms of elevational connectivity. Such a measure should quantify how easily a species living in patch \(j\) can spread and colonize patch \(i\). Because the fitness is assumed to be elevation-dependent, \(C_{ij}\) depends on how often a species, assumed to be adapted to the elevation of \(j\), needs to travel outside its optimal fitness range in the path from \(j\) to \(i\). \(C_{ij}\) thus depends on the elevation field but also on the width of the species niche, here described by the parameter \(\sigma\). Indeed, for high \(\sigma\), species are free to spread throughout the system regardless of elevational constraints. Conversely, for low \(\sigma\), species are constrained to spread following paths with similar elevation without the ability to cross elevational barriers. LEC subsumes the combined effect of the three geomorphic factors: bounded elevational range, frequency distribution of areal extent at different elevation, and differential elevational connectivity.

The closeness \(C_{ij}\) can be expressed as

\[
C_{ij} = \max_{\rho=1} C_{ij,\rho} \tag{2}
\]

where \(C_{ij,\rho}\) is a measure of the closeness of community \(j\) to \(i\) along path \(\rho\). The overall closeness \(C_{ij}\) is defined as the maximum value of \(C_{ij,\rho}\) along all of the possible paths \(\rho \text{ form } j \text{ to } i\) (see the graphical representation in Fig. 5). \(C_{ij}\) is assumed to be proportional to the product of the probabilities of making each step of the path \(\rho\). Let \(p = (k_1, k_2, \ldots, k_{\ell})\), \(k_1 = j, k_{\ell} = i\) be the sites comprised in a path \(\rho \text{ form } j \text{ to } i\). \(C_{ij,\rho}\) can be expressed as

\[
C_{ij,\rho} = \prod_{l=1}^{\ell} e^{-\frac{(z_{k_l} - z_{k_l+1})^2}{\sigma^2}}. \tag{3}
\]

In Eq. 3, the exponential form is proportional to the fitness that species adapted to site \(j\) have in site \(k_l\).

From an operational viewpoint, \(C_{ij}\) is computed by focusing on the quantity

\[
-\ln C_{ij} = \frac{1}{2} \min_{\rho=1} \sum_{l=1}^{\ell} (z_{k_l} - z_{k_l+1})^2, \tag{4}
\]

where the log-transformation maintains extremal properties. For each site \(j\), a graph is built with edges representing all possible nearest-neighbor connections among sites and weights equal to the square of the difference between the site elevation and \(z_j\). The Dijkstra algorithm (57) is then used to find the shortest path from \(j\) to all other sites.

ACKNOWLEDGMENTS. The authors thank the reviewers for their insightful comments and suggestions. We acknowledge support from Swiss Federal Institute of Aquatic Science and Technology (Eawag) disciplinary funds, the European Research Council (ERC) Advanced Grant Program through RINEC Project 227612, the H2020 European Framework Programme through ECOPOTENTIAL Project 641762, and the Swiss National Science Foundation through Projects 31003A_135622 and PP00P3_150698.