Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10 PeV with IceCube

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.117.241101</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Apr 05 09:14:00 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/106354</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos above 10 PeV with IceCube

(IceCube Collaboration)

1III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
2Department of Physics, University of Adelaide, Adelaide 5005, Australia
3Department of Physics and Astronomy, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, Alaska 99508, USA
4CTPS, Clark-Atlanta University, Atlanta, Georgia 30314, USA
5School of Physics and Center for relativistic astrophysics, Georgia Institute of technology, Atlanta, Georgia 30332, USA
6Department of Physics, Southern University, Baton Rouge, Louisiana 70813, USA
7Department of Physics, University of California, Berkeley, California 94720, USA
8Department of Physics, University of California, Berkeley, California 94720, USA
We report constraints on the sources of ultrahigh-energy cosmic rays (UHECRs) above 10^9 GeV, based on an analysis of seven years of IceCube data. This analysis efficiently selects very high-energy neutrino-induced events which have deposited energies from 5×10^5 GeV to above 10^{11} GeV. Two neutrino-induced events with an estimated deposited energy of $(2.6 \pm 0.3) \times 10^6$ GeV, the highest neutrino energy observed so far, and $(7.7 \pm 2.0) \times 10^5$ GeV were detected. The atmospheric background-only hypothesis of detecting these events is rejected at 3.6σ. The hypothesis that the observed events are of cosmogenic origin is also rejected at $> 99\%$ CL because of the limited deposited energy and the nonobservation of events at higher energy, while their observation is consistent with an astrophysical origin. Our limits on...
cosmogenic neutrino fluxes disfavor the UHECR sources having a cosmological evolution stronger than the star formation rate, e.g., active galactic nuclei and γ-ray bursts, assuming proton-dominated UHECRs. Constraints on UHECR sources including mixed and heavy UHECR compositions are obtained for models of neutrino production within UHECR sources. Our limit disfavors a significant part of parameter space for active galactic nuclei and new-born pulsar models. These limits on the ultrahigh-energy neutrino flux models are the most stringent to date.

DOI: 10.1103/PhysRevLett.117.241101

Introduction.—The sources of ultrahigh-energy cosmic rays (UHECRs; cosmic-ray energy $E_{\text{CR}} \gtrsim 10^{18}$ eV) remain unidentified [1]. The majority of the candidate objects are extra-Galactic, such as active Galactic nuclei (AGN) [2–6], γ-ray bursts [7–13], and starburst galaxies [14–19]. UHECR interactions with ambient photons and matter at sources generate astrophysical neutrinos with 5% of the parent UHECR energy, on average [20–22]. Thus, a substantial fraction of these extremely high-energy (EHE) astrophysical neutrinos is expected to have an energy above 10^{7} GeV. Moreover, neutrinos with energies above $\sim 10^{7}$ GeV are expected to be produced in the interactions between the highest-energy cosmic rays and background photons in the Universe [23]. In the following we refer to the neutrinos produced in these interactions as cosmogenic neutrinos [24]. These astrophysical and cosmogenic EHE neutrinos can constitute key messengers identifying currently unknown cosmic accelerators, possibly in the distant Universe, because their propagation is not influenced by background photon or magnetic fields.

In this Letter, we report results of an analysis of seven years of IceCube data obtained in the search for diffuse neutrinos with energies larger than 5×10^{5} GeV. The current analysis is optimized in particular for the neutrinos with energies above 10^{7} GeV, which is higher in energy than the other IceCube analyses [25,26]. The analysis described here is based on data taken between April 2008 and May 2015, corresponding to 2426 days of effective live time. This is approximately 3 times more data than the previous IceCube EHE neutrino search based on two years of data [27]. No cosmogenic neutrino candidate was observed in that study, but two PeV events were detected [28]. Stringent limits were placed on cosmogenic neutrino fluxes, and it was shown that astrophysical objects with emission rates per comoving space density as a function of redshift $\psi_\gamma(z)$ following a strong cosmological evolution, such as Fanaroff-Riley type-II (FRII) radio galaxies, are disfavored as highest-energy cosmic-ray sources.

Data selection and analysis.—IceCube is a cubic-kilometer deep-underground Cherenkov neutrino detector located at the South Pole [29], which is designed to measure neutrinos with energies above 10^{2} GeV. The construction of the IceCube detector was completed in December 2010. The array comprises 5160 optical sensors [30,31] on 86 vertical strings distributed over a 1-km3 instrumented ice volume at 1450–2450 m depth. Additional particle shower sensors at the surface constitute the IceTop neutrino-generator program based on the ANIS code [35]. At energies above $\sim 10^6$ GeV, prompt atmospheric neutrinos from short-lived heavy meson decays are expected to dominate over conventional atmospheric neutrinos from pion and kaon decays. While a flux of prompt atmospheric neutrinos must exist, it has not been experimentally observed. The conventional atmospheric neutrino model from Ref. [36], and the prompt model presented in Ref. [37] both incorporating the cosmic-ray knee model given in Ref. [38] are included in the background estimation. An updated calculation [39] of the prompt flux [37] predicts a reduced prompt flux by a factor of ~ 2. The experimental data agree well with lower energy background predictions [27]. Cosmogenic and astrophysical neutrinos are simulated using the JUILE T package [40] as in our earlier work [27].

The majority of atmospheric backgrounds deposit less energy in IceCube than the EHE neutrino signal. We reject most of the background by cutting events with low energy deposition. The number of observed Cherenkov photons is used as a proxy for the deposited energy. The majority of the background is removed by requiring that the measured number of PhotoElectrons (NPE) is larger than a zenith angle-dependent threshold. The reconstructed zenith angle is obtained using a χ^2 fit to a simple track hypothesis [41]. The quality of the reconstruction is evaluated via the $\chi^2_{\text{track}}/\text{NDF}$ where NDF is the number of degrees of freedom. The selection threshold is optimized for the cosmological neutrino model [42] and kept constant for
each detector configuration. The criteria are qualitatively equivalent to those used in Ref. [27], with details given in the Supplemental Material [43]. Events with more than a single IceTop hit in the time interval of $-1 \mu s \leq t_{\text{ca}} \leq 1.5 \mu s$ are rejected. Here, t_{ca} is the time when the reconstructed downward-going track is at the closest approach to the IceTop optical sensors. The exposure of this analysis for each neutrino flavor is shown in Fig. 1 along with the summed exposure.

The background event rate induced by the atmospheric muons and neutrinos is reduced from ~ 2.8 kHz trigger-level rate to 0.064$^{+0.023}_{-0.020}$ events per 2426 days of live time. The expected event rates for cosmogenic and astrophysical models are shown in Tables I and II, respectively. Only electron and muon neutrinos are produced when UHECRs interact with photons or matter. As a result of flavor oscillation, $\nu_e : \nu_\mu : \nu_\tau = 1:1:1$ on Earth, assuming the standard full pion decay chain of neutrino production [21,46,47]. This is compatible with TeV-PeV flavor ratio measurements [48–51]. The neutrino distributions are summed over the three flavors. Equal neutrino and anti-neutrino fluxes, indistinguishable in IceCube, are assumed.

Two events were observed in the present 2426-day IceCube sample. The best estimates of the deposited energy are $(7.7 \pm 2.0) \times 10^5$ GeV and $(2.6 \pm 0.3) \times 10^6$ GeV, in the form of a spherical particle shower and an upward-moving track at a zenith angle of 101° [60], respectively. Three previously observed PeV events [28,58] do not pass the current event selection, due to the increased NPE threshold for events with $\chi^2_{\text{track}}/\text{NDF} \geq 80$.

The sample satisfying the selection criteria is analyzed using the binned Poisson log-likelihood ratio (LLR) method [61]. The events are binned in both the reconstructed zenith angle and the energy proxy, with only the energy proxy information being used for events with large $\chi^2_{\text{track}}/\text{NDF}$. The zenith angle and energy proxy used in the LLR test are the results of refined reconstruction using a maximum likelihood method [62,63]. The hypothesis that the two observed events are of atmospheric origin is tested using an ensemble of pseudoexperiment trials to derive the LLR test statistic distribution. The test rejects the atmospheric background-only hypothesis with a p value of

\begin{table*}[h]
\centering
\begin{tabular}{|c|c|c|c|}
\hline
ν & Event rate per live time & p value & MRF \\
\hline
Murase et al. [56] & & & \\
$s = 2.3$ & 7.4$^{+1.1}_{-0.9}$ & 2.2$^{+0.4}_{-0.8}$ & 0.96 & ($\xi_{\text{CR}} \leq 96$) \\
Fang et al. [59] & & & \\
SFR & 5.5$^{+0.8}_{-0.7}$ & 7.8$^{+14.4}_{-3.7}$ & 1.34 \\
\hline
\end{tabular}
\caption{Cosmogenic neutrino model tests: Expected number of events in 2426 days of effective live time, p values from model hypothesis test, and 90% C.L. model-dependent limits in terms of the model rejection factor (MRF) [52], defined as the ratio between the flux upper limit and the predicted flux.}
\end{table*}

\begin{table*}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
ν & Event rate per live time & p value & MRF \\
\hline
Kotera et al. [53] & & & \\
SFR & 3.6$^{+0.5}_{-0.8}$ & 22.3$^{+10.8}_{-3.9}$ & 1.44 \\
FR II & 14.7$^{+2.7}_{-2.2}$ & < 0.1% & 0.33 \\
Aloisio et al. [54] & & & \\
SFR & 4.8$^{+0.7}_{-0.9}$ & 7.8$^{+6.8}_{-1.8}$ & 1.09 \\
FR II & 24.7$^{+3.6}_{-4.6}$ & < 0.1% & 0.20 \\
Yoshida et al. [55] & & & \\
$m = 4.0$, $\zeta_{\text{max}} = 4.0$ & 7.0$^{+1.0}_{-1.0}$ & 0.1$^{+0.5}_{-0.1}$ & 0.37 \\
Ahlers et al. [42] & & & \\
best fit, 1 EeV & 2.8$^{+0.4}_{-0.4}$ & 9.5$^{+6.5}_{-1.6}$ & 1.17 \\
best fit, 3 EeV & 4.4$^{+0.6}_{-0.7}$ & 2.2$^{+1.3}_{-0.9}$ & 0.66 \\
Ahlers et al. [42] & & & \\
best fit, 10 EeV & 5.3$^{+0.8}_{-0.8}$ & 0.7$^{+1.5}_{-1.2}$ & 0.48 \\
\hline
\end{tabular}
\caption{Astrophysical neutrino model tests: Same as Table I. The flux normalization scales linearly for AGN models with the assumed baryonic loading factor ξ_{CR} for Murase FSRQ (broad-line region) [56] or neutrino-to-γ ratio $Y_{\nu\gamma}$ for Padovani BL Lac [57] models. A power-law proton UHECR spectrum with index s is assumed in the FSRQ model. The corresponding parameters for these models to explain the measured IceCube neutrino flux in TeV-PeV range [58] are excluded by more than 99.9% C.L.}
\end{table*}
The hypothesis that the two events are of cosmogenic origin is rejected with a p value of 0.3%, because of the low observed deposited energy and the absence of detected events at higher energy. However, the observations are compatible with a generic astrophysical E^{-2} power-law flux with a p value of 92.3%. The energy deposited and the zenith angles of the two observed events are better described by a neutrino spectrum softer than the spectrum of $\geq 10^6$ GeV neutrinos, which experience strong absorption effects during their propagation through the Earth. This observation allows us to set an upper limit on a neutrino flux extending above 10^7 GeV. The limits also are derived using the LLR method. Cosmogenic neutrino models are tested by adding an unbroken E^{-2} flux without cutoff as a nuisance parameter to explain the observed two events.

The systematic uncertainties are estimated similarly to the previous publication [27]. The primary sources of uncertainty are simulations of the detector responses and optical properties of the ice. These uncertainties are evaluated with an in situ calibration system using a light source and optical sensor sensitivity studies in the laboratory. Uncertainties of $+42\%$ and -2% are estimated for the number of background and signal events, respectively. In addition, uncertainties of -11% are introduced to the neutrino-interaction cross section based on CTEQ5 [64] calculated as Ref. [65] and $+10\%$ by the photonuclear energy losses [66]. The uncertainty on the neutrino-interaction cross section is from Ref. [67]. The uncertainty associated with the photonuclear cross section is estimated by comparing the current calculation with the soft-component-only model. An uncertainty of $+34\%$ and -44% associated with the atmospheric background is also included. The error is dominated by the experimental uncertainty of cosmic ray (CR) spectrum measurements ($\pm 30\%$) [1,68], theoretical uncertainty on the prompt flux calculation [37], and the primary CR composition. All the resultant limits presented in this Letter include systematic uncertainties. Taking the maximally and minimally estimated background and signal distributions in a 1σ error range by adding systematic uncertainties in quadrature, each signal and background combination results in an upper limit. The weakest limit is taken as a conservative upper limit including systematic uncertainties. The uncertainty is energy dependent and, thus, it is model-spectrum-shape dependent. Model-dependent limits are generally weakened by $\sim 20\%$ and $\sim 30\%$ for cosmogenic and astrophysical-neutrino models, respectively.

Cosmogenic neutrinos.—We tested cosmogenic neutrino models. Aside from the primary composition dependence, the cosmogenic neutrino rates in the current analysis depend significantly on the UHECR source evolution function that characterize the source classes. Table I represents the p values and associated 90% C.L. for cosmogenic models. The models from Ref. [42] are constructed in such a manner that the cosmogenic γ-ray emission from the decays of π^0 produced by the interactions of UHECRs with the cosmic microwave background (CMB) is consistent with the Fermi-LAT measurements of the diffuse extragalactic γ-ray background [69,70]. Our constraints on these models imply that the majority of the observed γ-ray background is unlikely to be of cosmogenic origin.

Limits on cosmogenic neutrino models [53,54] using two classes of source-evolution functions are presented in Table I. One evolution function is the star formation rate (SFR) [71], which is a generic measure of structure formation history in the Universe, and the other is that of FRII radio-loud AGN [72,73]. The cosmogenic models assuming FRII-type evolution have already been constrained by the previous study [27]. In addition, these strong evolution models may conflict with the observed γ-ray background [42,74,75]. The current analysis not only strongly constrains the FRII-type but also begins to constrain the parameter space where SFR drives UHECR source evolution. The predicted neutrino spectra and the corresponding model-dependent limits are presented in Fig. 2. When the primaries are heavy nuclei, photodisintegration is more likely than pion production, hence the flux of cosmogenic muon neutrinos is suppressed [53,76–79].

![Figure 2](image-url)

FIG. 2. Model-dependent 90% confidence-level limits (solid lines) for (upper panel) proton cosmogenic-neutrino predictions (dashed lines) from Ahlers [42] and Kotera [53] and (lower panel) astrophysical neutrino fluxes from AGN (BLR) models of Murase [56] and Padovani (long dashes: $Y_{\nu\gamma} = 0.8$, short dashes: $Y_{\nu\gamma} = 0.3$) [57], and the Fang pulsar model [59]. The range of limits indicates the central 90% energy region. Two lines of the Ahlers model represent different threshold energies of the extragalactic UHECR component. The deviation of the Kotera and Ahlers models below 10^6 GeV is due to different models of the extragalactic background light assumed for the calculation. The wide energy coverage of the current analysis (Fig. 1) allows a stringent model-dependent limit to be placed for both cosmogenic and astrophysical models.
Thus the limit on the proton composition cosmogenic models could also be considered as the limit on the proton fraction of a mixed-composition UHECR model for the given evolution model.

A more generic scanning of parameter space for the source evolution function, \(\psi_s(z) \propto (1 + z)^m \), up to the maximum source extension in redshift \(z \leq z_{\text{max}} \), was also performed using an analytical parameterization [80]. Because only the CMB is assumed as the target photon field in the parameterization, the limits are systematically weaker than that on the models that include extragalactic background light, such as infrared and optical photons, with the given evolution parameters. The resultant exclusion contour is shown in the upper panel of Fig. 3. Each point represents a given cosmogenic-neutrino model—normalized by fitting the UHECR spectrum to data [80]—and the contour represents the exclusion confidence limit calculated using the LLR method. The UHECR spectrum dependence of the cosmogenic neutrino model is also studied in Ref. [81]. Our results disfavor a large portion of the parameter space where \(m \geq 3.5 \) for sources distributed up to \(z_{\text{max}} = 2 \). These constraints imply that the sources of UHECRs seem to evolve more slowly than the SFR. Otherwise, a proton-dominant composition at the highest energies, in particular the dip model [82], is excluded [83], as studied also in Refs. [75,84,85].

Astrophysical neutrinos.—We tested astrophysical neutrino models for the UHECR sources. One of the advantages of studying astrophysical neutrino models is that not only proton-dominant, but also mixed- or heavy-composition UHECR models can be tested with IceCube. The results of the model tests are listed in Table II, and the limits are shown in the lower panel of Fig. 2.

The AGN models relate the neutrino emission rates in each source with the observed photon fluxes using phenomenological parameters, such as the baryon loading factor \(\xi_{\text{CR}} \) [56] and the neutrino-to-\(\gamma \)-ray intensity ratio \(Y_{\nu\gamma} \) [57]. As the neutrino flux scales linearly with these parameters, the limits can be interpreted as constraints on the parameters, as listed in Table II. The observed UHECR generation rate around \(10^{10} \) GeV (~\(10^{44} \) erg Mpc\(^{-3} \) yr\(^{-1} \)) requires the loading factor \(\xi_{\text{CR}} \) to be around 3 and 100 for UHECR spectral indices \(s = 2.0 \) and 2.3, respectively [56].

The current constraints on \(\xi_{\text{CR}} \) are comparable or slightly below these required values. This indicates that AGN inner jets are less likely to be a major source of the UHECRs, regardless of the observed UHECR compositions. A consistent but weaker limit on these models is also obtained from an analysis searching for the neutrino signal excess in the direction of blazar populations [86]. Rapidly spinning pulsars may also be capable of accelerating nuclei to \(10^{11} \) GeV [59]. They are also disfavored as UHECR sources if they have a cosmological evolution stronger than the SFR. As shown in Fig. 2, provided a flat neutrino spectrum in the UHECR source is assumed, astrophysical neutrino spectra are generally predicted to be described by a hard power law [87]. These spectra continue up to a cutoff energy determined by the maximal acceleration energy of the source. Figure 3 provides a generic constraint on these astrophysical fluxes as an exclusion region in the parameter space for \(E^{-2} \) power-law neutrino flux normalization \(\phi_0 \) and spectral cutoff energy \(E_{\text{cut}} \). It indicates that \(E^2 \phi_0 \geq 6 \times 10^{-9} \) GeV cm\(^{-2} \) s\(^{-1} \) sr\(^{-1} \) is disfavored for neutrino fluxes extending above \(10^9 \) GeV, such as the UHECR source models.

Differential limit.—A quasidifferential 90\% C.L. is presented in Fig. 4 using the LLR method, considering the two observed events. Each point on the solid line is the result of an independent hypothesis test for a decade-wide \(E^{-1} \) power-law flux as a signal model, representing a 90\% C.L. upper limit. The median null observation limit (sensitivity) is also presented. The limit for an \(E^{-2} \) flux (\(E^2 \phi < 9.2 \times 10^{-9} \) GeV/cm\(^2\) s sr\(^{-1} \)) in the central 90\% energy region between \(1.0 \times 10^6 \) and \(4.0 \times 10^9 \) GeV is shown for reference.

FIG. 3. Constraints on the UHECR source evolution model and all flavor \(E^{-2} \) power-law flux model parameters. The colored areas represent the parameter space excluded by the current analysis. (Top) Cosmogenic flux parameters \(m \) and \(z_{\text{max}} \) of the UHECR-source cosmological evolution function of the form \(\psi_s(z) \propto (1 + z)^m \), assuming proton-dominant UHECR primaries with only the CMB as the background photon field. A semi-analytic formulation [80], with the injected proton spectrum of \(E^{-2.5} \) up to \(6 \times 10^{11} \) GeV, is used to estimate the neutrino flux. The boxes indicate approximate parameter regions for SFR [71] and FRII-A [72] and FRII-B [73], neglecting the minor far-redshift contributions. (Bottom) Upper limits on \(E^{-2} \) power-law neutrino flux normalization \(\phi_0 \) and spectral cutoff energy \(E_{\text{cut}} \).
FIG. 4. All-flavor-sum neutrino flux quasidifferential 90% C.L. upper limit on one energy decade E^{-1} flux windows (solid line). The limits are derived using a log-likelihood ratio method. The median null observation limit (sensitivity) is also shown (dashed line). Cosmogenic-neutrino model predictions (assuming primary protons) are shown for comparison: Kotera et al. [53], Ahlers et al. [42], and an astrophysical neutrino model from Murase et al. [56]. Model-independent differential limits on one energy decade E^{-1} flux from Auger [45] and ANITA-II [88] with appropriate normalization are also shown. A model-dependent upper limit on an unbroken E^{-2} power-law flux from the current analysis ($E^2\phi < 9.2 \times 10^{-9}$ GeV/cm2 s sr) is shown for reference (dotted line).

Summary.—Analysis of IceCube data results in the largest exposure to date in the search for the neutrino flux above 107 GeV up to 3×10^{10} GeV. The nonobservation of neutrino events with deposited energy larger than a few PeV in seven years of IceCube data places a serious constraint on cosmogenic and astrophysical neutrino models. The restrictions on the cosmological evolution of UHECR sources and the model-dependent constraints on the source classes reported herein are the strongest constraints on the origin of the highest-energy cosmic rays above the ankle achieved via neutrino astronomy. The detection of cosmogenic neutrinos from sources with weak or no evolution, and of heavy-composition UHECRs requires a larger scale detector. Cost-effective radio Askaryan neutrino detectors, such as ARA [89] or ARIANNA [90], therefore would be an important future option.

We acknowledge the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin—Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Villum Fonden, Danish National Research Foundation (DNRF), Denmark.

*Earthquake Research Institute, University of Tokyo, Bunkyo, Tokyo 113-0032, Japan.
†Corresponding author.
aya@hepburn.s.chiba-u.ac.jp (A. Ishihara)