Bootstrapping Rapidity Anomalous Dimensions for Transverse-Momentum Resummation

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td><a href="http://dx.doi.org/10.1103/PhysRevLett.118.022004">http://dx.doi.org/10.1103/PhysRevLett.118.022004</a></td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Fri Jan 25 00:23:20 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td><a href="http://hdl.handle.net/1721.1/106877">http://hdl.handle.net/1721.1/106877</a></td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Bootstrapping Rapidity Anomalous Dimensions for Transverse-Momentum Resummation

Ye Li\(^1\)\(^,\) and Hua Xing Zhu\(^2\)\(^,\)\(^3\)

\(^1\)Fermilab, P.O. Box 500, Batavia, Illinois 60510, USA
\(^2\)Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 11 April 2016; revised manuscript received 12 October 2016; published 11 January 2017)

A soft function relevant for transverse-momentum resummation for Drell-Yan or Higgs production at hadron colliders is computed through to three loops in the expansion of strong coupling, with the help of the bootstrap technique and supersymmetric decomposition. The corresponding rapidity anomalous dimension is extracted. An intriguing relation between anomalous dimensions for transverse-momentum resummation and threshold resummation is found.

DOI: 10.1103/PhysRevLett.118.022004

Introduction.—The transverse-momentum \(q_T\) distribution of generic high-mass color-neutral systems (Drell-Yan lepton pair, Higgs, EW vector boson pair, etc.) produced in hadron collisions has been of great interest since the early days of quantum chromodynamics (QCD) [1–17]. It provides a testing ground for examination and improvement of our understanding of QCD, both perturbatively and nonperturbatively. When \(q_T\) is small compared with the invariant mass \(Q\) of the system, fixed-order perturbation theory breaks down due to the appearance of large logarithms of the form \(\ln^k(q_T^2/Q^2)/q_T^2\), with \(k \geq 0\) at each order in strong coupling \(\alpha_s\). These large logarithms originate from incomplete cancellation of soft and collinear divergences between real and virtual diagrams. Fortunately, Collins, Soper, and Sterman (CSS) have shown that they can be systematically resummed to all orders in perturbation theory [5], thanks to QCD factorization.

In recent years, there have been increasing interests in applying soft-collinear effective theory (SCET) [18–22] to resum large logarithms in perturbative QCD using the renormalization group (RG) method. For \(q_T\) resummation this has been done by a number of authors [23–29]. For the transverse-momentum observable, the relevant momentum modes in the light-cone coordinate for fields in the effective theory are soft, \(p_s \sim Q(\lambda, \lambda, \lambda)\), collinear, \(p_c \sim Q(\lambda^2, 1, \lambda)\), and anticollinear, \(p_a \sim Q(1, \lambda^2, \lambda)\). Here \(\lambda \sim q_T/Q\) is a power counting parameter. The corresponding effective theory is SCET\(_H\). An important feature of SCET\(_H\) is that soft and collinear modes live on the same hyperbola of virtuality, \(p_s^2 \sim p_c^2 \sim p_a^2 \sim \lambda^2 Q^2\). Besides the usual large logarithms of the ratio between hard scale \(Q\) and soft scale \(\lambda Q\), there are also large rapidity separations between soft, collinear, and anticollinear modes that need to be resummed. In this Letter we adopt the rapidity RG formalism of Chiu, Jain, Neill, and Rothstein [27,28]. According to the rapidity RG formalism, the cross section at small \(q_T\) factorizes into a hard function \(H\), transverse-momentum-dependent (TMD) beam functions \(B\), and a TMD soft function \(S_\perp\). Schematically the factorization formula reads

\[
\frac{1}{\sigma} \frac{d^3\sigma^{(\text{res})}}{dz q_T d^2 y dQ^2} \sim H(\mu) \int \frac{d^2 \vec{b}_\perp}{(2\pi)^2} e^{i\vec{b}_\perp \cdot \vec{q}_T} \cdot |B \otimes B(\vec{b}_\perp, \mu, \nu) S_\perp(\vec{b}_\perp, \mu, \nu)|. \tag{1}
\]

Large logarithms in virtuality are resummed by running in the renormalization scale \(\mu\), while large logarithms in rapidity are resummed by running in the rapidity scale \(\nu\). The \(\mu\) evolution of the hard function can be derived from the quark or gluon form factor and is well known [30–32]. Since the physical cross section is independent of \(\mu\) and \(\nu\) order by order in the perturbation theory, it follows that the \(\mu\) and \(\nu\) evolution of \(|B \otimes B|\) is fixed once the corresponding evolution for the soft function is known. The knowledge of \(\mu\) and \(\nu\) evolution of the hard, beam, and soft function, together with the boundary conditions of these functions at initial scales, determine the all order structure of large logarithms of \(q_T\).

The naive definition of the TMD soft function is a vacuum expectation value of lightlike Wilson loops with a transverse separation, which suffers from light-cone or rapidity divergence [3]. A proper definition of the TMD soft function requires the introduction of the appropriate regulator for the rapidity divergence. Proposals to regularize the rapidity divergence include the nonlightlike axial gauge without Wilson lines [5], tilting Wilson lines off the light cone [33], nearly lightlike Wilson lines with subtraction of the soft factor [34], modifying the phase space measure [26,27,35], modifying the ie prescription of the eikonal propagator [36], etc. In this Letter, we follow the recent proposal [37] by Neill and the current authors of implementing an infinitesimal shift in the time direction to the Wilson loop correlator. Specifically, the TMD soft function with the rapidity regulator of Ref. [37] reads

\[
S_\perp(\vec{b}_\perp, \mu, \nu) = \lim_{\nu \to -\infty} S_{F.D.}(\vec{b}_\perp, \mu, \nu) \equiv \lim_{\nu \to -\infty} \int d^2 y_a \left[ T[S_a(-\infty, y_a(\vec{b}_\perp))] S_\perp(y_a(\vec{b}_\perp), \mu, \nu) \right]|0\rangle, \tag{2}
\]
where the two Wilson loops are separated by the distance $y_\perp(\vec{b}_\perp) = (i b_0/\nu, i b_0/\nu, \vec{b}_\perp)$, with $b_0 = 2 e^{-t_x}$. $S_{n(\vec{b})}$ are path-ordered Wilson lines on the light cone. They carry fundamental or adjoint color indices, depending on whether the color-neutral system is produced in $q\bar{q}$ annihilation ($d_a = N_c$) or $gg$ fusion ($d_a = N_c^2 - 1$). $T$ is the time-ordered operator. The soft function $S_{\perp}$ in Eq. (2) is closely related to the so-called fully differential soft function [25] $S_{F,D}$. The limit $\nu \to +\infty$ means that only the nonvanishing terms of $S_{F,D}$ are kept in that limit. The important role of $S_{F,D}$ in our calculation will be explained in the next section. Note that our definition for the TMD soft function does not rely on perturbation theory. However, we restrict to the perturbatively calculable part of the soft function in this Letter.

After minimal subtraction of the dimensional regularization pole $1/\epsilon^2$ in the $\overline{\text{MS}}$ scheme, the soft function $S_{\perp}$ depends on both the renormalization scale $\mu$ and the rapidity scale $\nu$. The $\mu$ evolution of the TMD soft function is specified by the RG equation:

$$
\frac{d \ln S_{\perp}(\vec{b}_\perp, \mu, \nu)}{d \ln \mu^2} = \Gamma_{\text{cusp}}[a_S(\mu)] \ln \frac{\mu^2}{\nu^2} - \gamma_\perp[a_S(\mu)],
$$

where $\Gamma_{\text{cusp}}$ is the well-known lightlike cusp anomalous dimension [38,39], which is known to three loops in QCD [40]. $\gamma_\perp$ is the soft anomalous dimension governing the single logarithmic evolution, which can be extracted through to three loops from the QCD splitting function [40] and quark and gluon form factor [30–32], as is confirmed by the explicit three-loop calculation [41]. The rapidity evolution equation for the TMD soft function reads

$$
\frac{d \ln S_{\perp}(\vec{b}_\perp, \mu, \nu)}{d \ln \nu^2} = \int_\mu^\infty \frac{d \mu'}{\mu'} \Gamma_{\text{cusp}}[a_S(\mu)] + \gamma_\perp[a_S(b_0/|\vec{b}_\perp|)],
$$

where the rapidity anomalous dimension $\gamma_\perp$ is introduced for the single logarithmic evolution of rapidity logarithms. Thanks to the non-Abelian exponentiation theorem [42–44], which our regularization procedure [37] preserves, the perturbative soft function can be written as an exponential:

$$
S_{\perp}(\vec{b}_\perp, \mu, \nu) = \exp[a_S S_1^{l_1} + a_S^2 S_2^{l_2} + a_S^3 S_3^{l_3} + O(a_S^4)],
$$

where we have defined $a_S = a_S(\mu)/(4\pi)$ as our perturbative expansion parameter throughout this Letter. The one- and two-loop coefficients $S_{1,2}^F$ can be found in Ref. [37]. In the next section we outline the procedure we used to calculate the three-loop coefficient $S_3^F$, from which the rapidity anomalous dimensions can be extracted to the same order.

Method.—To obtain the TMD soft function $S_{\perp}$ through to three loops, we first calculate the fully differential soft function to the same order. $S_{F,D}$ obeys a RG equation identical to Eq. (3) [25]:

$$
\frac{d \ln S_{F,D}(\vec{b}_\perp, \mu, \nu)}{d \ln \mu^2} = \Gamma_{\text{cusp}}[a_S(\mu)] \ln \frac{\mu^2}{\nu^2} - \gamma_\perp[a_S(\mu)].
$$

In $S_{F,D}$, $\nu$ is a parameter of the theory, not a regulator. Therefore, the $\nu$ dependence of $S_{F,D}$ is in general complicated. The perturbative solution to $S_{F,D}$ is then determined by Eq. (6) and the boundary condition at the initial scale, $S_{F,D}(\vec{b}_\perp, \mu = \nu, \nu)$. Similar to $S_{\perp}$, $S_{F,D}$ can also be written as an exponential, as in Eq. (5). The one- and two-loop coefficients $S_{1,2}^{F,D}$ were first computed in Ref. [45], and reproduced in Ref. [37].

By dimensional analysis, $S_{F,D}(\vec{b}_\perp, \nu, \nu)$ is a function of $x = -b_0^2 \nu^2/\mu$. A strategy based on the bootstrap program for scattering amplitudes [46] is proposed in Ref. [37] to compute $S_{F,D}(\vec{b}_\perp, \nu, \nu)$, which we briefly recall below. In Ref. [45], the one- and two-loop coefficients $S_{1,2}^{F,D}$ are written in terms of classical and Nielsen’s polylogarithms with argument $x$. A crucial observation made in Ref. [37] is that the same results can be written in terms of harmonic polylogarithms (HPLs) $H_\nu(x)$, with weight indices drawn from the set $\{0,1\}$. Furthermore, for the available one- and two-loop data, the leftmost and the rightmost index of the weight vectors were found to be 0 and 1, respectively. The rightmost index has to be 1, because the two cusp points of the Wilson loops are separated by Euclidean distance for $x < 0$, and no branch cut is expected. On the other hand, the condition on the leftmost index comes empirically from the observation of the one- and two-loop results; as we will show below; this condition breaks down at three loops in QCD. Nevertheless, for now we proceed with the empirical ansatz for the $L$-loop fully differential soft function proposed in Ref. [37], which is a linear combination of HPLs with undetermined rational coefficients, and whose weight vectors obey the leftmost- and rightmost-index conditions. The undetermined coefficients of the HPLs can then be fixed by performing an expansion around $x = 0$, together with the constraint that rapidity divergence is only a single logarithmic divergence at each order for the expansion coefficients in Eq. (5). It turns out that the $x \to 0$ limit of $S_{F,D}$ is smooth, and the expansion is simply a Taylor series in $x$. As explained in Ref. [37], the leading $x^0$ term of the expansion reproduces the threshold soft function [41], while the coefficient of $x^\alpha$ can be obtained by inserting a numerator $(t^2 - t^2)^\alpha$ into the integrand of the threshold soft function, where $t$ is the total momentum of real radiation from the time-ordered Wilson loop. Furthermore, using integration-by-part identities [48,49], integrals with high rank numerator insertion can be reduced to a small number of master integrals, which have been computed for other purpose recently [50–55].

Although the strategy outlined above is straightforward, it has two caveats. First, the maximal weight of HPLs at three loops for massless perturbation theory is 6. It follows that the number of coefficients that need to be fixed is $\sum_{\ell=0}^5 2^{\ell} = 31$. In other words, one needs to insert a high-rank numerator $(t^2 - t^2)^{31}$ into the integrand of the threshold soft function in order to have enough data to
fix the coefficients, which is unfortunately beyond the ability of the tools for integration-by-part reduction [56–59]. Second, it is not clear whether the conjectured sets of functions in Ref. [37] are sufficient to describe the three-loop soft function. To circumvent the above difficulties, we first perform the calculation for soft Wilson loops whose matter content [41,51,53] resembles those of $N = 4$ supersymmetric Yang-Mills theory (SYM). This has a number of advantages. (1) It has been observed that for soft Wilson loops in SCET [41], the results in $N = 4$ SYM have uniform degrees of transcendentality with transcendent weight $2L$ at $L$ loops. Furthermore, the $N = 4$ results match the maximal-weight part of the corresponding QCD results. A similar phenomenon was first observed for the anomalous dimension of the twist-2 operator for Wilson lines [60]. It also holds for some other quantities, e.g., the perturbative form factor [30,61,62]. Assuming that this is also true in our current calculation, by calculating $S_{E,D}$ in $N = 4$ SYM first, we should automatically obtain the maximal-weight part of $S_{E,D}$ in QCD. (2) Since the $N = 4$ SYM results have uniform degrees of transcendentality, there are only 16 coefficients to be fixed at three loops, which can be achieved within the current computation power. (3) The remaining parts of the QCD result have a transcendent weight lower than 6 and, therefore, only require 15 coefficients to be fixed. Alternatively, since the Feynman diagrams corresponding to the lower-weight part have a less complicated analytical structure, they can be computed by brute force. Direct calculation can also test the completeness of the ansatz. And it turns out that although the ansatz remain complete for the three-loop $N = 4$ SYM result, it fails for the three-loop QCD one. Fortunately, for the QCD result, a brute-force calculation for the terms proportional to $n_f$ is possible using the method of Ref. [54]. More importantly, the result for the $n_f$ terms indicate which set of functions we should add to the existing ansatz. The full results, for both $N = 4$ SYM and QCD, are presented in the next section.

Results.—We first present the results for $S_{E,D}$ in $N = 4$ SYM. We only give the results at the initial scale, $\mu = \nu$. The full scale dependence can be inferred from Eq. (6). The one- and two-loop coefficients can be found in Ref. [37]. The three-loop coefficient in the four-dimensional-helicity scheme [63] reads

$$S_{E,D}^{N = 4}|_{\mu = \nu} = c_3 + \frac{C_A C_F}{N_c^2} (S_{E,D}^{N = 4}(x)|_{\mu = \nu} - c_3^{N = 4}) + C_A C_A \left[ -\frac{1072}{9} \frac{\zeta_2 H_2}{H_2} - 176 \frac{\zeta_3 H_2}{H_2} - 88 \frac{\zeta_2 H_3}{H_2} + 8 \frac{\zeta_2 H_2}{H_2} + 8 \frac{\zeta_2 H_2}{H_2} \right]$$

$$+ \frac{30790}{81} H_2 + \frac{7120}{727} H_3 - \frac{104}{9} H_4 - \frac{440}{3} H_5 - 8 \frac{H_1}{x} \left( H_{1,1} - H_{1,1} \right) - \frac{7120}{27} H_2 - 1072 \frac{H_2}{H_2} - 8 \frac{H_2}{H_2}$$

$$- \frac{3112}{9} H_{3,1} - 88 H_{3,2} - \frac{352}{3} H_{4,1} - \frac{392}{3} H_{2,1,2} + 8 \frac{H_{2,1,2}}{H_2,1,2} + \frac{352}{3} H_{2,2,1} + \frac{352}{3} H_{3,1,1} + \frac{352}{3} H_{2,1,1}$$

$$+ C_A C_A n_f \left( 16 \frac{\zeta_2 H_2}{H_2} + \frac{16}{3} \zeta_2 H_3 - 16 \frac{\zeta_2 H_2}{H_2} - \frac{7988}{81} H_2 - 2312 \frac{H_2}{27} H_3 - 64 \frac{H_3}{H_4} + 80 \frac{H_2}{H_5} + \frac{8}{3} \left( H_{1,1} - H_{1,1} \right) \right)$$

$$+ \frac{2312}{27} H_{2,1} + 16 \frac{\zeta_2 H_2}{H_2} + 16 \frac{\zeta_2 H_3}{H_2} + \frac{224}{3} H_{2,1} + 16 H_{3,2} + 64 \frac{H_{4,1}}{H_{2,1,1}} - \frac{32}{3} H_{2,1,1} - \frac{16}{3} H_{2,1,1} + \frac{64}{3} H_{2,1}$$

$$- \frac{64}{3} H_{3,1,1} - 64 H_{2,1,1,1} \right] + C_A n_f \left( \frac{400}{81} H_2 + \frac{160}{27} H_3 + \frac{32}{9} H_4 - \frac{160}{27} H_{2,1} - \frac{32}{9} H_{3,1} + \frac{32}{9} H_{2,1,1} \right)$$

$$+ C_A C_F n_f \left( 32 \frac{\zeta_3 H_2}{H_2} - \frac{110}{3} H_2 - 8 H_3 + 8 H_2 \right),$$

where $c_3^{N = 4} = 492.609 N_c^2$ is the three-loop constant for the threshold soft function in $N = 4$ SYM [41]. We have used the shorthand notation for the HPLs [47] and neglected the argument $x$. It is interesting to note that each term in Eq. (7) has a uniform sign and integer coefficient. Furthermore, the overall sign is alternating at each order in $\alpha_s$ [37]. A similar behavior of alternating uniform signs in perturbative expansion with increasing loop order for a certain observable was known before, see Ref. [64]. The corresponding results for QCD in the ’t Hooft–Veltman scheme reads
where \( C_a = C_F \) for the Drell-Yan process, and \( C_a = C_A \) for Higgs production. \( c_3^0 \) is the three-loop scale independent part of the threshold soft function in QCD, \( c_3^0 = \delta_3^{\text{th}}(\tau, \mu = \tau^{-1}) \), see, for example, Refs. [37,41,65]. It can be found in Eq. (3.2) of Ref. [41] multiplying by a Casimir rescaling factor \( C_a/C_A \). We note that the only term that goes beyond the empirical ansatz [37] is \( \langle H_{1,1} - H_{1,1}/x \rangle \), which can be inferred from the direct calculation of the \( n_f \)-dependent part using the Feynman diagram method. (This term cancels out in the \( N = 4 \) combination, as is clear from Eq. (7). It also cancels out in the pure \( N = 1 \) SYM with an adjoint gluino, in which one simply sets \( n_f \rightarrow C_A \) and \( C_F \rightarrow C_A \) We thank Mingxing Luo and Lance Dixon for pointing out this.) Specifically, if all the relevant integrals are known, the result for S\(_{\mu} \) can be found in Eq. (3.2) of Ref.[41] multiplying by a Casimir rescaling factor \( CaCAnf \). We note that the only \( n_f \)-dependent terms by a brute-force Feynman diagram calculation. We observe that for both the fermion and scalar contributions, the only addition needed to correct the empirical ansatz at three loops is the combination \( (H_{1,1} - H_{1,1}/x) \). From there we can readily extract the gluon contribution, which is the same in \( N = 4 \) SYM and QCD, by subtracting from Eq. (7)

\[
\gamma_0^r = 0,
\gamma_1^r = C_a C_A \left( \frac{28 \xi_3}{9} - \frac{808}{27} \right) + \frac{112 C_a n_f}{27},
\gamma_2^r = C_a C_A \left( -\frac{176}{3} \xi_3 \xi_2 + \frac{6392}{81} \xi_3^2 + \frac{12328}{27} \xi_3 + \frac{154}{3} \xi_4 - \frac{192}{5} \xi_5 - \frac{297029}{729} \right) + C_a C_A n_f \left( -\frac{824}{81} \xi_2 + \frac{904}{27} \xi_3 + \frac{20}{3} \xi_4 + \frac{62626}{729} \right) + C_a n_f^2 \left( \frac{32}{9} - \frac{1856}{729} \right) + C_a C_F n_f \left( -\frac{304}{9} \xi_3 - 16 \xi_4 + \frac{1711}{27} \right).
\]

Note that \( \gamma_0^r \) and \( \gamma_1^r \) can be obtained from the QCD anomalous dimension known a long time ago [68–70]. They have also been reproduced in SCET recently [37,71–73]. The three-loop coefficient \( \gamma_2^r \) is new and is one of the main results of this Letter. It is also straightforward to obtain the boundary condition of \( S_{\perp} \) at the initial scale \( c_3^1 = S_3^{\perp}(b_{\perp}, \mu = b_0/|b_{\perp}|, \nu = b_0/|b_{\perp}|) \):

\[
c_3^1 = C_a C_A \left( \frac{928 \xi_3^2}{9} + \frac{1100}{9} \xi_2 \xi_3 - \frac{151132 \xi_3}{243} - \frac{297481 \xi_2}{729} + \frac{3649 \xi_4}{27} + \frac{1804 \xi_5}{9} - \frac{3086 \xi_6}{27} + \frac{5211949}{13122} \right) + C_a C_A n_f \left( \frac{40}{9} \xi_3 \xi_2 + \frac{74530 \xi_2}{729} + \frac{8152 \xi_3}{27} - \frac{416 \xi_4}{3} - \frac{184 \xi_5}{27} - \frac{412765}{6561} \right) + C_a C_F n_f \left( \frac{275 \xi_2}{9} + \frac{3488 \xi_3}{81} + \frac{152 \xi_4}{9} - \frac{224 \xi_5}{486} \right) + C_a n_f^2 \left( -\frac{136 \xi_2}{27} - \frac{560 \xi_3}{243} - \frac{44 \xi_4}{27} - \frac{256}{6561} \right).
\]

The corresponding fermion and scalar contributions. We can also conclude that the only addition to the ansatz of the gluon contribution is the combination \( (H_{1,1} - H_{1,1}/x) \).

We briefly describe the available checks on our results in Eqs. (7) and (8). First, as mentioned above, due to the relative simplicity in the resulting integrals, we have been able to compute all the \( n_f \)-dependent part in Eq. (8) by directly calculating the Feynman diagrams. We find that our ansatz, even including the \( (1 - 1/x)H_{1,1} \) term, is insufficient to express the result in the intermediate step of the direct calculation. The additional terms needed are \( (1 - 1/x)H_{1,1} \). Interestingly, they all cancel out in the sum of real and virtual contributions. Second, our ansatz can be uniquely fixed at three loops using the data from a Taylor expansion over \( x \) through to \( x^{10} \). However, we have obtained the expansion data through to \( x^{17} \), leading to an over constrained system of equations. We found that the solution exists and is unique for the system, thus providing a strong check of our calculation. See, e.g., Ref. [66] for a similar discussion on using an over constrained system of equations to fix an ansatz.

With the fully differential soft function at hand, it is straightforward to obtain \( S_{\perp} \) by taking the limit \( \nu \rightarrow +\infty \) using the package hpl [67]. The soft anomalous dimension \( \gamma_s \) through to three loops can be found, e.g., in Eqs. (A.4)–(A.6) of Ref. [41] by a rescaling factor \( C_a/C_A \). The rapidity anomalous dimensions are given by
Discussion.—The explicit results for the rapidity anomalous dimension in Eq. (9) can be rewritten in a remarkable form:

\[
\begin{align*}
\gamma_0' &= \gamma_0^\ell, \\
\gamma_1' &= \gamma_1^\ell - \beta_0 c_1^\ell, \\
\gamma_2' &= \gamma_2^\ell - 2\beta_0 c_2^\ell - \beta_1 c_1^\ell + 2C_A C_F \beta_0 \zeta_4.
\end{align*}
\]  

Equation (11) is interesting because it connects between very different objects: the rapidity anomalous dimension \(\gamma_r\), the soft anomalous dimension \(\gamma_s\), the threshold constant \(c_s\), and the QCD beta function. A similar relation also holds in \(\mathcal{N} = 4\) SYM by dropping the beta function terms in Eq. (11).

In the CSS formalism, the resummation of large \(q_T\) logarithms is controlled by two anomalous dimensions, \(A(a_s(\mu)) = \sum_{i=1}^n a_s^i A_i\) and \(B(a_s(\mu)) = \sum_{i=1}^n a_s^i B_i\). It is straightforward to express these anomalous dimensions in terms of the anomalous dimension in SCET, see, e.g., Ref. [26,74]. In particular, we obtain the \(B\) anomalous dimension in the original CSS scheme through to three loops:

\[
\begin{align*}
B_1 &= \gamma_0^V - \gamma_0^c, \\
B_2 &= \gamma_1^V - \gamma_1^c + \beta_0 c_1^V, \\
B_3 &= \gamma_2^V - \gamma_2^c + \beta_1 c_1^V + 2\beta_0 \left( c_2^V - \frac{1}{2}(c_1^V)^2 \right),
\end{align*}
\]  

where \(\gamma_V\) is the anomalous dimension of the hard function results from matching QCD onto SCET, and \(c_V\) is the scale independent term of the hard matching [75]. For Drell-Yan production they can be extracted from the quark form factor \([30–32]\), while for Higgs production they can be extracted from the gluon form factor \([30–32]\), and additionally from effective coupling of the Higgs boson to gluons [76]. Equation (12) partially explains the close connection between \(\gamma_r\) and \(\gamma_s\), because the combination \(\gamma_V - \gamma_c\) is given by the \(\delta(1-x)\) part of the single pole in the QCD splitting function [40]. Substituting the actual numbers in Eq. (12), we find

\[
\begin{align*}
B_1^{\text{DY}} &= -8, \\
B_2^{\text{DY}} &= 13.3447 + 3.4138 n_f, \\
B_3^{\text{DY}} &= 7358.86 - 721.516 n_f + 20.5951 n_f^2
\end{align*}
\]  

for Drell-Yan production. For Higgs production, the results are

\[
\begin{align*}
B_1^H &= -22 + 1.33333 n_f, \\
B_2^H &= 658.881 - 45.9712 n_f, \\
B_3^H &= 35134.6 - 7311.10 n_f + 293.017 n_f^2
\end{align*}
\]  

\[- (836 + 184 n_f - 14.2222 n_f^2) \ln \frac{m_H^2}{m^2},
\]  

The one- and two-loop results have been known for a long time [68–70]. The three-loop results are new. We note that numerically \(B_3^{\text{DY}}\) is quite large for \(n_f = 5\).

In summary, we have presented the first calculation of the soft function for transverse-momentum resummation in rapidity RG formalism through to three loops, using the rapidity regulator recently introduced in Ref. [37]. As a by-product, we have also obtained the fully differential soft function to the same order. Our calculation combines the use of the bootstrap technique and supersymmetric decomposition in transcendental weight. We found a surprising relation between the anomalous dimensions for the transverse-momentum resummation and the threshold resummation, whose explanation calls for further investigation. Our three-loop results pave the way for transverse-momentum resummation for the production of a color neutral system at hadron colliders at N^3LL + NNLO accuracy. The method and results of our calculation also make generalizing the \(q_T\)-subtraction method [77] to N^3LO promising.

We are grateful for a useful conversation with Duff Neill, and helpful comments on the Letter by Iain Stewart. This work was supported by the Office of Nuclear Physics of the U.S. Department of Energy under Contract No. DE-SC0011090. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy.

\[yli32@fnal.gov\]
\[zhuhx@mit.edu\]


