Inhibited proton transfer enhances Au-catalyzed CO$_2$-to-fuels selectivity

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1073/pnas.1602984113</td>
</tr>
<tr>
<td>Publisher</td>
<td>National Academy of Sciences (U.S.)</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sat Dec 29 18:14:14 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/107143</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Inhibited proton transfer enhances Au-catalyzed CO$_2$-to-fuels selectivity

Anna Wuttiga, Momo Yaguchib,c, Kenta Motobayashib,1, Masatoshi Osawab, and Yogesh Surendranatha,2

aDepartment of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139;bInstitute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan; and cGraduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan

Edited by Daniel G. Nocera, Harvard University, Cambridge, MA, and approved June 7, 2016 (received for review February 22, 2016)

CO$_2$ reduction in aqueous electrolytes suffers efficiency losses because of the simultaneous reduction of water to H$_2$. We combine in situ surface-enhanced IR absorption spectroscopy (SEIRAS) and electrochemical kinetic studies to probe the mechanistic basis for kinetic bifurcation between H$_2$ and CO production on polycrystalline Au electrodes. Under the conditions of CO$_2$ reduction catalysis, electro-generated CO species are irreversibly bound to Au in a bridging mode at a surface coverage of ~0.2 and act as kinetically inert spectators. Electrokinetic data are consistent with a mechanism of CO production involving rate-limiting, single-electron transfer to CO$_2$ with concomitant adsorption to surface active sites followed by rapid one-electron, two-proton transfer and CO liberation from the surface. In contrast, the data suggest an H$_2$ evolution mechanism involving rate-limiting, single-electron transfer coupled with proton transfer from bicarbonate, hydronium, and/or carbonic acid to form adsorbed H species followed by rapid one-electron, one-proton, or H recombination reactions. The disparate proton coupling requirements for CO and H$_2$ production establish a mechanistic basis for reaction selectivity in electrocatalytic fuel formation, and the high population of spectator CO species highlights the complex heterogeneity of electrode surfaces under conditions of fuel-forming electrocatalysis.

Significance

Renewable electricity can be stored in the energy-dense bonds of carbon-based fuels via the electroreduction of CO$_2$. CO$_2$ reduction in aqueous electrolytes suffers efficiency losses because of the simultaneous reduction of water to H$_2$. Rational design of selective CO$_2$-to-fuels catalysts requires direct knowledge of the electrode surface structure during turnover and how electrons and protons couple to direct product selectivity. Using model Au catalysts, we uncover the complex heterogeneity in CO surface binding equilibria and the differential proton coupling requirements for CO vs. H$_2$ production. We assemble the spectroscopic and kinetic data to construct a mechanistic model that predicts that impeding proton transfer to the surface is an effective strategy for improving CO$_2$-to-fuels catalyst selectivity.

Author contributions: A.W. and Y.S. designed research; A.W. and M.Y. performed research; K.M. and M.O. contributed new reagentanalytic tools; A.W., M.Y., M.O., and Y.S. analyzed data; and A.W., M.Y., M.O., and Y.S. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

aPresent address: Department of Engineering Physics, Electronics, and Mechanics, Nagoya Institute of Technology, Nagoya 466-8555, Japan.

bTo whom correspondence should be addressed. Email: yogesh@mit.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1602984113/-/DCSupplemental.
barrier to this ET is augmented by the applied overpotential. Thus, the relative driving force/rate scaling factors (the transfer coefficients) for HER vs. CDR will impact selectivity, even in the limit of identical adsorption energies for key intermediates and a common active site for both reactions. However, the transfer coefficients for HER and CDR occurring concurrently have yet to be probed unambiguously because both reactions are subject to significant transport limitations that mask the activation-controlled kinetics. In particular, because the CDR and HER both consume protons, the pH local to the surface becomes more alkaline than that of the bulk (18, 35, 36). As a result, the buffer strength of the electrolyte strongly impacts the CDR product distribution (37–40). In addition, we have shown that H₂ production can be selectively suppressed relative to CO production by increasing the thickness of ordered porous gold (Au) electrodes (41). Although these studies suggest the importance of transport limitations in determining CDR catalytic selectivity, the mechanistic basis for kinetic branching remains poorly understood.

Herein, we examine the mechanistic basis for CDR vs. HER selectivity on polycrystalline Au surfaces. Because Au surfaces principally generate CO and H₂ (42, 43), they provide an ideal platform for probing reaction selectivity. To probe this bifurcation, we combine for the first time, to our knowledge, in situ surface-enhanced IR absorption spectroscopy (SEIRAS) in an attenuated total reflectance (ATR) configuration (44–48) with electrokinetic studies that account for transport effects to formulate a mechanistic model that describes the surface adsorbate population and rate-limiting processes for both reactions. Under conditions relevant to CDR catalysis, we observe that CO is irreversibly bound to a significant fraction of the surface, whereas (bi)carbonate desorbs from the surface. Against this backdrop, we find that CDR is gated on a significant fraction of the Au surface as the relative to that of bulk water V peak intensity declines rapidly over adsorption to Au. Data onsets at ∼0.80 V [all potentials are reported vs. the standard hydrogen electrode (SHE)] on polycrystalline Au electrodes (indicated by yellow shading in Fig. 1) (43, 56). The background spectrum was recorded at 0.80 V in CO₂-saturated 0.1 M NaHCO₃ (Fig. L4), and after polarizing to 0.60 V, a positive band at 1,456 cm⁻¹ is observed, attributed to adsorbed bicarbonate. Scanning the potential to negative values gives rise to a bleach at 1,460 cm⁻¹ and a rising band at 1,614 cm⁻¹ in the corresponding SEIRA spectrum (Fig. LB). Both the rise and bleach are reversed upon scanning back to positive potentials, indicating that these processes are reversible. Based on literature precedent (57, 58), we assign the peak at 1,460 cm⁻¹ to (bi)carbonate that is adsorbed to the Au surface at positive potentials. As expected, when negatively polarized, the electrode repels this negatively charged anion, causing its desorption and the corresponding bleach at the same band position. We assign the peak at 1,614 cm⁻¹ to the δHOH bending mode of adsorbed water (59–61), and its intensity is anticorrelated to the surface population of adsorbed bicarbonate, suggesting that water desorption takes the place of adsorbed carbonate under the reducing potentials of CDR catalysis. Interestingly, the δHOH mode of adsorbed water is red-shifted by 31 cm⁻¹ relative to that of bulk water (~1,645 cm⁻¹), attributed to a decrease in hydrogen bonding between water molecules arranged at the surface (59).

In situ SEIRAS spectra also reveal that CO is bound to the Au electrode surface during CDR catalysis. At ~0.40 V, bands are observed at 2,046 and 1,977 cm⁻¹, attributed to electrogenerated CO bound on the Au surface in two distinct environments. In line with literature reports and our own experimental data (Fig. S2), the 2,046- and 1,977-cm⁻¹ bands display Stark shifts of 50 and 74 cm⁻¹ V⁻¹, respectively, with bands red-shifting with polarization to more negative potentials. Accounting for the Stark shift (62–64), these band positions are in line with experimental vibrational frequency ranges that have been assigned to terminally (CO₄) and bridge-bonded CO (CO₃) on Au surfaces, respectively (49, 65–68). Although Stark effects prevent a direct comparison of the absolute peak positions observed experimentally under polarization with those computed in the absence of an interfacial field, computed frequency separations of 80–152 cm⁻¹ (69–73) between these two binding modes are in line with the 80- to 90-cm⁻¹ separation observed here. The stretching frequencies of CO₃ on Au surfaces are higher than the 1,850–1,700 cm⁻¹ range typical of terminal CO₃ (74), thus supporting the assignment of CO₃ to the bridge- and terminal binding modes described in the literature (74), suggesting that these surface species retain an intermediate bond order between two and three and may exist in a semibridging mode. We note that the geometrical preference for CO on Au is highly dependent on the electrolyte conditions (68, 73, 75), and these data provide the first insights, to our knowledge, into CO adsorption at the intermediate pH conditions relevant to CDR catalysis.

Atop adsorption of CO occurs reversibly on Au surfaces under the conditions of CDR catalysis. Under CO₂/CO cosaturation conditions (0.1 M NaHCO₃ electrolyte saturated with 0.5 atm CO and 0.5 atm CO₂), the CO₄ band rises and falls over the same potential range (~0.42 to 0.20 V) in the forward and reverse traces (Fig. IH), indicating reversible CO₄ adsorption to Au. Data presented in Fig. S3 additionally support the reversibility of CO₂ adsorption. Under CO-free conditions, after the electrode is rapidly switched back to the open circuit potential (0.36 V) after polarization at a potential where CO is evolved (~1.00 V) (Fig. S3A), the integrated CO₂ peak intensity declines rapidly over the first three SEIRA spectra (over 1.7 s) (Fig. S3B). This decline is attributed to CO₂ desorption from the Au surface as the equilibrium concentration of electrogenerated CO in the vicinity of the electrode diminishes because of diffusion and convection away from the surface. Importantly, this decline in CO₂ is not accompanied by a rise in CO₃ population (Fig. S3B), supporting the notion that CO₂ desorbs as gaseous CO (CO₂) rather than by its interconversion to CO₃. This observation, taken
together with the reversibility of CO\textsubscript{stop} adsorption between the forward and reverse potential scans (Fig. 1H), suggests that the decline in CO\textsubscript{stop} peak intensity observed at potentials more negative than 0.00 V is also caused by CO\textsubscript{stop} desorption as CO\textsubscript{g} rather than its conversion to CO\textsubscript{bridge}. If CO\textsubscript{stop} and CO\textsubscript{bridge} species were interconverting on the timescale of the measurement, the observed hysteresis in the latter (see below) (Fig. 1G) would give rise to a similar hysteresis in the former, which we do not observe (Fig. 1H). To the best of our knowledge, the observed desorption of CO\textsubscript{stop} at negative potentials is unprecedented and motivates additional investigation to identify its origin.

Nonetheless, the potential regime where CO\textsubscript{stop} is bound to the surface is positive of the thermodynamic potentials for HER ($E^0 = -0.42$ V) and CDR ($E^0 = -0.51$ V) under these conditions. Together, our SEIRAS data indicate that CO\textsubscript{stop} species (i) bind reversibly to the electrode surface and (ii) exist in low surface population at the potentials relevant to CDR catalysis.

In contrast, bridge adsorption of CO occurs irreversibly on Au surfaces under the conditions of CDR catalysis. Fig. 1C and G reveal dramatic hystereses in the CO\textsubscript{bridge} population between negative- and positive-going scans, in line with irreversible adsorption. Data presented in Fig. S3 additionally support this irreversibility. Under CO-free conditions, after the electrode is rapidly switched back to open circuit (0.36 V) after polarization at a potential relevant to CDR catalysis (~1.00 V) (Fig. S3A), the CO\textsubscript{bridge} peak remains present indefinitely (Fig. S3B). Indeed, whether CO is electrogenerated (Fig. 1C) or codosed (Fig. 1G), CO\textsubscript{bridge} remains on the Au surface up until potentials are sufficiently positive to induce its two-electron oxidative desorption as CO\textsubscript{2} (see the following paragraph) (66, 67, 75–78). Notably, the irreversibility of CO\textsubscript{bridge} adsorption promotes its formation 510 mV positive of the thermodynamic E^0 of CDR to CO\textsubscript{g} (~0.51 V) under these conditions (Fig. 1C). This 510-mV difference places a lower limit on the CO adsorption energy of these irreversibly bound species. We note that a minority population of CO\textsubscript{stop} is also electrogenerated at 0.51 V (Fig. 1D), but it is only observed on the initial negative-going scan of the electrode, implying that the surfaces are subject to reconstruction during CDR catalysis. Nonetheless, on polarization to potentials relevant to CDR catalysis, we observe (i) that electrogenerated CO\textsubscript{bridge} is the predominant surface species and (ii) that it is irreversibly bound to the surface.

To estimate the surface coverage of irreversibly adsorbed electrogenerated CO\textsubscript{bridge} species observed in Fig. 1B and C, we performed CO oxidative stripping analysis of a Au rotating cone electrode (RCE). An RCE (79) was used so that CO released from the surface would be swept away by rotation. In Fig. 2, solid line, the first cyclic voltammogram (CV) scan initiated after CDR catalysis on the RCE at ~0.80 V displays a broad oxidation wave spanning ~0.20 to 0.80 V, in line with reported potentials for two-electron CO oxidation to CO\textsubscript{2} on Au surfaces (66, 67, 75–78). On subsequent cycling (Fig. 2, dotted line), the broad wave is replaced by diminished background waves attributed to (bi)carbonate adsorption to the Au surface. Importantly, the onset potential of CO oxidation, ~0.20 V, observed in the CV (Fig. 2) is the same potential at which we observe a decline in CO\textsubscript{bridge} peak intensity in SEIRA spectra (Fig. 1C). In addition, this oxidative CV feature was still observed after a significant time delay (>1 min) after CDR catalysis, suggesting that CO\textsubscript{bridge}, unlike CO\textsubscript{stop}, is only removed through oxidative conversion to CO\textsubscript{2} rather than desorption as CO\textsubscript{g}. Together, these data lead us to assign this wave solely to the two-electron oxidation of CO\textsubscript{bridge} species to CO\textsubscript{2}.

Using the second scan as a baseline, we quantified the excess charge passed in the initial oxidative feature through relative...
Electrokinetic data for CO evolution catalysis. (P dependence of the CO partial current density at P the first (solid line) and second (dotted line) CV cycles recorded after at 1,000 rpm D (1 display linearity and a slope of 140 mV per decade (dec), 2) has been shown to give rise to a surface values were extracted from the total measured Γ (82). In Γ 1.8 nmol cm −2 relative to SEIRAS-active Au films (Γ is zeroth order in both pH and 0.2 under CDR catalysis. In Fig. 2, and is approximately first order in (68), suggesting that does not depend on the ratio of the proton does not inhibit by mass transport under the conditions examined in this study. Thus, we take the data collected in Fig. 3 as direct measurements of activation-controlled rates for CO production. The current–voltage (Tafel) data combined with the reaction order in P CO2 support a mechanistic sequence involving rate-limiting single ET to CO 2. The Eyring equation defines an exponential relationship between the activation barrier and reaction rate. Polarizing the electrode to greater η directly reduces the activation barrier for the reaction, leading to an exponential increase in the rate of CO evolution as observed in Fig. 3. For a mechanistic sequence involving a single rate-limiting ET from the catalyst resting state, the current is proportional to exp(βηF/RT) (81) (i.e., a limiting case of the Butler–Volmer equation at high η, where β is the symmetry factor for the reaction and the other constants take their usual meaning). For outer-sphere interfacial ET reactions, Marcus theory provides a direct estimate for β as a function of driving force and reorganization energy, λ (82). In particular, a β-value equal to 0.5 is expected for outer-sphere ET reactions for which λ is large relative to η. Although a Marcus-type model does not explicitly treat the case of inner-sphere ET reactions at interfaces, β-values of 0.5 have been observed in surface electrocatalysis (13). At modest η, the Tafel data in Fig. 3 display linearity and a slope of 140 mV per decade (dec), corresponding to a β-value of 0.4, in line with that expected for a rate-limiting single ET. The Tafel slopes observed here are similar to those observed previously for Au-catalyzed CDR (43, 56, 83–85). In addition, jCO is approximately first order in P CO2 across the same potential range of linear Tafel data collection (Fig. 3B), consistent with previous reports in bicarbonate (43) and phosphate (42) electrolytes. These order data taken together with the Tafel slope suggest that CO production occurs via rate-limiting single ET to CO 2.

CDR catalysis is zeroth order (Fig. 3 C and D) in all other electrolyte constituents over the entire range of linearity of the Tafel data. The rate of CO production is insensitive to the [HCO 3] − (Fig. 3C). At constant P CO2, a change in log[HCO 3] − also alters the pH by 1 unit (18), thus, this experiment alone does not rule out the possibility that the bicarbonate order is positive, whereas the pH order is negative and of the same magnitude, canceling each other out. However, the pH also declines with increasing P CO2 at fixed [HCO 3] − (18). Thus, any intrinsic negative order in pH would be reflected in an increase in the CO 2 order to a value greater than one, which we do not observe (Fig. 3B). We, therefore, take the data in Fig. 3C as evidence that j CO is zeroth order in both pH and bicarbonate. These results are consistent with studies in phosphate buffer (42), in which no pH dependence was observed for Au-catalyzed CDR. In addition, the j CO does not depend on the ratio of hydrogen/deuterium (H/D) in the electrolyte (Fig. 3D). We note that changing the H/D ratio can alter the pK a of the proton donors, but because we observe no dependence on [HCO 3] − or pH, neither of these effects convolute the observed absence of an H/D kinetic isotope effect (KIE). Together, the order data in SI Materials and Methods (Fig. S4) and estimated a surface concentration, Γ CO-bridge, of 0.4 nmol cm −2 Au. Full monolayer adsorption of CO to Au(110) – (1 × 2) has been shown to give rise to a surface concentration of Γ CO,max = 1.8 nmol cm −2 (68), suggesting that polycrystalline Au surfaces have a CO bridge surface coverage of θ CO-bridge = Γ CO-bridge/Γ CO,max ~ 0.2 under CDR catalysis. In Fig. 2, we note the presence of an oxidative feature more positive than 0.90 V vs. SHE that is correlated with the reductive feature spanning 0.50 to 0.90 V vs. SHE. These features are attributed to Au surface oxide formation and back reduction, and they do not affect the behavior of irreversibly stripping of adsorbed CO (Fig. S4B).

CO Evolution Rate Is Independent of the Proton Donor Environment. The relationship between potential and the rate of CO evolution (j CO) was probed over the potential range, −0.80 to −1.00 V, corresponding to overpotentials (η) between 290 and 490 mV for CDR to CO. These data, taken together with studies of the reactions at interfaces, reactions for which λ is large relative to η.

Fig. 3. Electrokinetic data for CO evolution catalysis. (A) CO partial current density–voltage (Tafel) behavior of Au foil in CO 2-saturated 0.1 M NaHCO 3 electrolyte. (B) P CO2 dependence of the CO partial current density at −0.80 V (dark blue), −0.90 V (teal), and −1.00 V (sky blue) recorded in 0.1 M NaHCO 3 electrolyte. (C) Bicarbonate concentration, (D) [NaHCO 3]/[NaDCO 3], and (E) P CO2 dependences of CO partial current density at −0.80 V (dark blue), −0.90 V (teal), and −1.00 V (sky blue) recorded in CO 2-saturated bicarbonate electrolyte.
Fig. 3 C and D suggest that the principal electrolyte constituents are not involved in the mechanistic sequence up to and including the rate-limiting step of catalysis.

CDR catalysis on Au generates CO, which may be expected to inhibit its production, particularly given the high population of adsorbed CO observed by SEIRAS (Fig. 1). To probe whether CO is a component of the rate expression for CDR, we examined j_{CO} as a function of P_{CO}. However, this measurement requires an alternative method for product detection because electro-generated CO is dwarfed by the CO stream and therefore, cannot be quantified directly by in-line GC detection of CO. Because Au electrodes are known to predominantly generate CO and H$_2$ with >95% cumulative Faradaic efficiency and because the CO and H$_2$ Faradaic efficiencies add to near unity under our experimental conditions, the H$_2$ partial current (j_{H2}) can be subtracted from the total observed current (j_{TOT}) to indirectly measure j_{CO}. The pH of the solution was kept at 7.1 by maintaining the P_{CO2} at 0.5 atm, whereas the P_{CO} was varied by Ar dilution. We observe that indirectly measured j_{CO} is zeroth order in P_{CO} (Fig. 3E), indicating that minor equilibrium CO dissociation from the surface does not precede CO$_2$ activation under these conditions.

The data in Fig. 3 are consistent with an electrochemical rate law described by the following expression (also shown schematically in Fig. 4A):

$$j_{\text{CO}} = k_1 \theta_{\text{CDR}} P_{\text{CO}} \exp \left(\frac{\beta E}{RT} \right),$$ \[1\]

where k_1 is a potential-independent constant. The rate expression shows the first-order dependence in P_{CO2} as well as the zeroth-order dependence in pH, [HCO$_3^-$], and P_{CO}. This rate law also includes an exponential term that captures the potential-dependent rate of an irreversible single ET step. In Eq. 1, θ_{CDR} is the surface coverage of CDR active sites, which is defined as the ratio of the surface concentration of CDR active sites, Γ_{CDR}, to the total number of Au surface sites, Γ_{Au}. Thus, this value must be between zero and one.

The foregoing rate expression is consistent with a mechanistic model for CDR catalysis that involves rate-limiting ET to CO$_2$ to form an adsorbed Au-COO$^-$ species. This species then undergoes rapid one ET, two PT to liberate water and generate CO, which rapidly dissociates from the surface to regenerate the active site for subsequent turnover (Fig. 4A). Importantly, our mechanistic model invokes that reductive adsorption of CO is not concerted with PT as previously postulated (18, 43, 56, 83). The lack of dependence on pH and bicarbonate explicitly excludes a PT/ET mechanism with rate-limiting ET. Because the thermodynamic potential for outer-sphere reduction of CO$_2$ to its radical anion, CO$_2^-$, is at −1.90 V in water (93), which is at least 1.10 V more negative than the top end of the linear Tafel range, we postulate that surface adsorption to Au imparts dramatic stabilization of the adsorbed ET intermediate and enables an ET/PT pathway. Whereas computational studies typically probe the energetics for adsorption of the neutral COOH intermediate (22, 27, 28), our findings suggest that the adsorption energy of COO$^-$ is a better descriptor of the rate of CO$_2$ activation on Au.

The population of surface active sites for CDR (θ_{CDR}) on Au is fractional. An estimate of θ_{CDR} is provided by quantifying the population of CO$_\text{bridge}$ species on the Au surface under catalytic conditions (Fig. 2). Because these CO species are bound irreversibly, we postulate that they act as inert spectators during CDR catalysis. Analyses of the stripping charge associated with CO oxidation, described above, reveal a surface coverage of CO$_\text{bridge}$ of ~0.2. This high coverage suggests that CO$_\text{bridge}$ species may decorate a combination of surface defects, basal planes, and/or reconstructed surface regions. The remaining surface fraction, ~0.8, not bound by CO$_\text{bridge}$ places an upper limit on θ_{CDR}. Although these studies provide no direct insight into the active sites responsible for CDR catalysis, they are consistent with the emerging notion that CDR is mediated by minority surface features existent at Au step edges (22, 30, 31) or grain boundaries (56). Because we observe CO$_\text{stop}$ adsorption in equilibrium with CO$_2$, we postulate that CO$_2$ production proceeds through the intermediary of CO$_\text{stop}$ species, which rapidly desorb from the surface (Fig. 4A).

H$_2$ Production Is Dependent on the Proton Donor Environment. The relationship between potential and the rate of H$_2$ evolution (j_{H2}) was probed over the same potential range as CDR, −0.80 to −1.00 V, corresponding to η between 0.80 and 1.00 V for HER. These data taken together with studies of reaction orders with respect to [HCO$_3^-$], pH, and P_{CO} provide the basis for mechanistic interpretation of H$_2$ evolution occurring simultaneously with CDR.
on polycrystalline Au surfaces. Fig. 5S7 shows that \(j_{H2} \) is significantly affected by the rotation rate of the working electrode at applied potentials of \(-0.80, -0.90, \) and \(-1.00 \) V in \(CO_2 \)-saturated 0.1 M NaHCO\(_3\), showing that \(j_{H2} \) is convoluted by mass transport limitations under these conditions. For the same reaction occurring in 1 M NaHCO\(_3\), however, the rotation rate dependence is greatly suppressed (Fig. S7). Thus, data taken in \(CO_2 \)-saturated 0.1 M NaHCO\(_3\) are interpreted after accounting for mass transfer effects by extrapolating Kutney-Lee (KL) plots (Fig. S7A) of \(j_{H2}^{-1} \) vs. \(co^{1/2} \) to the y-intercept, representing infinite rotation rate, to extract activation-controlled \(j_{H2} \) values. Conversely, data recorded in \(CO_2 \)-saturated 1 M NaHCO\(_3\) at 2,000 rpm are taken as direct measurements of activation-controlled HER and overlaid with data analyzed using KL extrapolation (Fig. S8).

The Tafel behavior for HER is highly dependent on the proton donor environment. In Fig. 5A, we observe that the KL-extrapolated Tafel slope of 380 mV/dec for \(j_{H2} \) in \(CO_2 \)-saturated 0.1 M NaHCO\(_3\) is 170 mV/dec higher than the 210-mV/dec slope observed in \(CO_2 \)-saturated 1 M NaHCO\(_3\). The high Tafel slope measured in \(CO_2 \)-saturated 0.1 M NaHCO\(_3\), where incremental excursions in \(\eta \) do not significantly increase the rate, implies that rate-limiting chemical steps gate HER rather than ET (81). The lower Tafel slope observed in \(CO_2 \)-saturated 1 M NaHCO\(_3\) suggests a mechanism operative by rate-limiting single ET, with \(\beta \) equaling 0.3 (see above discussion for \(j_{CO} \)). Although Marcus theory would predict \(\beta = 0.5 \) for rate-limiting, outer-sphere, single-ET, transfer coefficients as low as 0.3 have been observed for inner-sphere electrochemical reactions involving rate-limiting ET (40, 94) and Levich also been predicted theoretically (95, 96). The observed changes in Tafel slope with bicarbonate concentration are further supported by the observation that \(j_{H2} \) is invariant with \(\eta \) at low [HCO\(_3\)] (0.03 mM), whereas \(j_{H2} \) becomes highly dependent on \(\eta \) at higher concentrations (1 M) (Fig. 5B). We note that this experiment, however, is not a direct probe of the explicit bicarbonate ion on \(j_{H2} \), because under \(CO_2 \) saturation conditions, varying the bicarbonate concentration by 1 dec changes the bulk pH by 1 unit (18). Thus, extracting the explicit bicarbonate order requires the ability to hold two of three parameters in the \(CO_2 \)-bicarbonate-pH equilibrium constant, which cannot be achieved experimentally while maintaining this equilibrium. Given this convolution, we take the values of the bicarbonate order as approximate. We stress that this convolution was simplified when examining the dependence of \(j_{CO} \) on bicarbonate concentration (Fig. 5C), because \(j_{CO} \) is zeroth order in both bicarbonate and pH. Nevertheless, HER is forward order in bicarbonate at \(-0.80 \) and \(-0.90 \) V (Fig. 5B), suggesting that the anion is a viable proton donor for the reaction. In contrast, the explicit dependence of HER catalysis on pH can be obtained, assuming that CO\(_2\) is not a direct reaction participant in HER. Under fixed [HCO\(_3\)], we varied the pH by modulating the \(P_{CO_2} \) and found that \(j_{H2} \) exhibits an inverse order dependence on the pH of the bulk electrolyte (Fig. 5C), suggesting that hydronium ions, as has been previously reported (97), or carbonic acid, which could be formed in minor equilibrium (98, 99), are also viable proton donors for this reaction. Together, the data suggest that hydronium, carbonic acid, and bicarbonate are viable proton donors and show that the rate of HER is highly dependent on the buffering strength.

The rate of HER is invariant with \(P_{CO_2} \). In Fig. 5D, we observe that \(j_{H2} \) is independent of \(P_{CO_2} \), suggesting that equilibrium CO dissociation does not precede H adsorption. Given the precedent that a variety of Au surface facets can support HER catalysis in the absence of CO (100), we expect that surface sites that are not bound by CO under these conditions remain competent for HER, provided that the proton donor concentrations are sufficiently high. The order data imply that \(j_{H2} \), like CO production, is not gated by equilibrium dissociation of CO.

The data in Fig. 5 imply an electrochemical rate law following the equation (also shown schematically in Fig. 4B):

\[
j_{H2} = k_1 \theta_{HER}[BH]^n \exp\left[\frac{\beta EF}{RT}\right] + k_3[BH]^r,
\]

where \(k_2 \) and \(k_3 \) are potential-independent constants. The rate expression shows forward-order dependence in proton donor, but we refrain from assigning the proton donor as bicarbonate, carbonic acid, or hydronium, because they may all be competent donors depending on the buffer strength and overpotential. Thus, we denote these viable donors cumulatively as BH. Although we note that minority proton donors, such as carbonic acid and hydronium, are expected to be depleted in the diffusion layer during steady-state catalysis, we stress that they can be readily replenished by rapid PT from majority buffer constituents or autoionization of water. Additionally, although we observe reaction orders in BH, the value of the order scales between 0.05 and 0.55 for bicarbonate and between \(-0.19 \) and \(-0.70 \) for pH depending on the applied potential. Despite the high population of CO on the surface (see above), the rate expression for HER is zeroth order in CO. This rate law also includes an exponential term that captures the potential-dependent rate of an irreversible single ET step. At low bicarbonate concentration, we observe a higher Tafel slope, leading us to include a second term in the rate expression that carries no potential dependence and is, instead, gated by a rate-limiting chemical step that still carries BH dependence. In Eq. 2, \(\theta_{HER} \) is defined as the surface coverage of HER active sites responsible for the first term in the rate expression.

The rate expression shown in Eq. 2 is consistent with a mechanistic model for HER catalysis occurring simultaneously with CDR that involves rate-limiting ET to hydronium, carbonic acid, or bicarbonate to form an adsorbed Au-H species at high bicarbonate concentrations. This Au-H intermediate undergoes rapid one ET, one PT or recombination with another Au-H to generate H\(_2\) and regenerate the surface site for subsequent turnover (Fig. 4B). This mechanism is consistent with the fact that Au-H species have not been spectroscopically observed to date, suggesting a low population of this intermediate in contrast to HER on Pt, which
CO (blue) vs. H₂ (red) Faradaic efficiency at −0.80 V (■), −0.90 V (●), and −1.00 V (▲) as a function of bicarbonate electrolyte concentration.

Fig. 6. CO (blue) vs. H₂ (red) Faradaic efficiency at −0.80 V (■), −0.90 V (●), and −1.00 V (▲) as a function of bicarbonate electrolyte concentration.

exhibits a high H coverage during catalysis (101). At lower bicarbonate concentrations, the second term dominates, limiting the rate of HER, which we postulate to be related to slow CO₂ bicarbonate equilibration steps (98, 99) that become competitive with the rate of PT to the surface at lower buffering strength and overpotentials. Nonetheless, the ensemble rate of HER is strongly dependent on the proton donor environment in a way that CDR catalysis is not.

Concluding Remarks

CDR catalysis at a metal electrode is an ensemble phenomenon that arises from the complex dynamics of surface adsorbates, intrinsic reaction kinetics, proton-coupled ET dynamics, and concentration gradients that develop at the interface. Herein, we have used a combination of electrochemical kinetics and in situ IR spectroscopy to parse these effects, and we have explicitly accounted for diffusional gradients by comparing experimental data collected on static and rotating electrodes. We find, for CDR and HER conducted on polycrystalline Au in CO₂-saturated bicarbonate electrolytes, that (i) the surfaces of Au electrodes consist of a high population of spectator CO₃(bridged species, (ii) CDR is gated by rate-limiting ET to CO₂, and is not dependent on the proton donor environment, (iii) HER is strongly dependent on the proton donor environment, (iv) the observed transfer coefficients for CDR are higher than those for HER, and (v) the intrinsic activation-controlled kinetics of CDR and HER are augmented by interfacial diffusional gradients that serve to suppress HER preferentially relative to CDR.

Together, these factors determine the critical parameters—proton donor concentration and applied overpotential (η)—that dictate catalyst selectivity. The effects of these two parameters on reaction selectivity are illustrated specifically in Fig. 6. Because of the intrinsically lower Tafel slope for CDR vs. HER, higher η favors CO (Fig. 6, blue) over H₂ evolution (Fig. 6, red) at a given bicarbonate concentration. In addition, accelerated rates of proton consumption with increased η serve to further decelerate the rate of HER as the proton donor concentration is decreased proximate to the surface. Because CDR is insensitive to the proton donor environment, changes in the interfacial proton activity do not augment the rate of CO production. Furthermore, CO₂ equilibration with bicarbonate is hindered by slow CO₂ hydration kinetics [2–s half-life (99)], preserving a high interfacial CO₂ concentration, despite an elevated local pH. As a result, at modest η (Fig. 6, □), similar rates of CDR and HER are observed irrespective of bicarbonate concentrations, whereas at higher η (Fig. 6, ○) and ▲, lower bicarbonate concentrations serve to significantly suppress HER, enhancing selectivity. These mechanistic insights predict that CDR selectivity can be enhanced over a wider potential range by amplifying proton depletion effects within a porous electrode, a notion supported by our recent studies on ordered porous Au inverse opals (41). Interestingly, similar suppression of HER has been shown to enhance CDR selectivity in molecular catalytic systems (102).

Our results establish the value of combining electrokinetic experiments with in situ IR studies to gain a molecular-level understanding of complex reactions, such as CDR. Spectroscopic data reveal that spectator CO₃(bridged species occupy a high population of the Au surface, consistent with the notion that catalysis proceeds at a minority fraction of surface sites. Taken together with electrochemical kinetic data, this work establishes a comprehensive model of the interfacial structure and reactivity of Au under catalytically relevant conditions, which highlights the divergent proton coupling requirements of CDR and HER as key drivers of selectivity in fuel formation.

Materials and Methods

Au films for in situ SEIRAS analyses were synthesized using an electropolishing technique (49). Handling procedures for the Au film, foil, and RCE are reported in SI Materials and Methods, and their electrochemically active surface area and surface faceting are shown in Figs. S1 and S5, respectively.

SEIRAS measurements were conducted using an EG&G PAR Model 263A Potentiostat and a Bio-Rad FTS-60A/B96 FTIR Spectrometer equipped with an HgGaTe (MCT) Detector and a homemade single-reflection accessory. The details of the ATR-SEIRAS cell configuration have been previously reported (45–48, 59, 103). CO₂ or CO₂/CO mixtures were continuously delivered to a three-compartment spectroelectrochemical cell containing purified (104) 100 mM NaHCO₃ during measurements. Spectra were sequentially acquired with a spectral resolution of 4 cm⁻¹ at every 0.76-s interval for cyclic voltammetry measurements (Fig. 1) or 0.58-s interval (Fig. S3) for chronoamperometry measurements. A single-beam spectrum collected at the starting potential was used as the reference spectrum. Details of electrochemical methods used are further described in SI Materials and Methods.

Electrokinetic measurements were conducted using a Gamry REF 600 Potentiostat and an in-line gas chromatograph (Multi-Gas Analyzer #3; SRI Instruments) equipped with a thermal conductivity detector, methanizer, and flame ionization detector in series after Molsieve 13 x and Haysep D Columns. CO₂, CO₂/Ar, or CO₂/Ar/CO mixtures were continuously delivered to an airtight H cell containing purified (104) NaHCO₃ or NaHCO₃/Na₂CO₃ (preparation is described in SI Materials and Methods) during measurements. GC traces were collected every 20 min, and the evolved CO or H₂ gases were converted to partial current densities as described in SI Materials and Methods.

ACKNOWLEDGMENTS. We thank Anthony Shoji Hall for helpful discussions and Tomohiro Fukushima for facilitating spectroscopic studies conducted at Hokkaido University (HU). A.W. and Y.S. thank the Massachusetts Institute of Technology (MIT) International Science and Technology Initiatives and the Hokkaido University (HU). A.W. and Y.S. thank the Massachusetts Institute of Technology Development Organization. A.W. is supported by a Graduate Research Fellowship from the National Science Foundation.
