Semisimple and G-Equivariant Simple Algebras Over Operads

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Etingof, Pavel. “Semisimple and G-Equivariant Simple Algebras Over Operads.” Applied Categorical Structures (April 20, 2016).</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1007/s10485-016-9435-1</td>
</tr>
<tr>
<td>Publisher</td>
<td>Springer Netherlands</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Wed Dec 19 09:55:24 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/107255</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/4.0/</td>
</tr>
</tbody>
</table>
Semisimple and G-Equivariant Simple Algebras Over Operads

Pavel Etingof

Abstract Let G be a finite group. There is a standard theorem on the classification of G-equivariant finite dimensional simple commutative, associative, and Lie algebras (i.e., simple algebras of these types in the category of representations of G). Namely, such an algebra is of the form $A = \text{Fun}_H(G, B)$, where H is a subgroup of G, and B is a simple algebra of the corresponding type with an H-action. We explain that such a result holds in the generality of algebras over a linear operad. This allows one to extend Theorem 5.5 of Sciarappa (arXiv:1506.07565) on the classification of simple commutative algebras in the Deligne category $\text{Rep}(S_t)$ to algebras over any finitely generated linear operad.

Keywords Simple algebra · Semisimple algebra · Operad · Equivariant

1 Semisimple Algebras Over Operads

1.1 Algebras

Let C be a linear operad over a field F [1]. E.g., C can be the operad of commutative associative unital algebras, associative unital algebras, or Lie algebras (the latter if $1/2 \in F$).

Recall [1] that a C-algebra is a vector space A over F with a collection of linear maps $\alpha_n : C(n) \to \text{Hom}_F(A^{\otimes n}, A)$ compatible with the operadic structure. Clearly, a direct product of finitely many C-algebras is a C-algebra.

Given a C-algebra A, we can define the space $E_A \subset \text{End}_F(A)$ spanned over F by operators of the form $\alpha_n(c)(a_1, \ldots, a_{n-1}, ?, a_j, \ldots, a_{n-1})$ for various $n \geq 2$, $c \in C(n)$, and $a_i \in A$. By the definition of an operad, E_A is a (possibly non-unital) subalgebra of $\text{End}_F(A)$.

© Springer Science+Business Media Dordrecht 2016
We also denote by L_A the image of $C(1)$ in $\text{End}_F(A)$. Clearly, L_A is a unital subalgebra and $L_A E_A = E_A L_A = E_A$. Thus $R_A := L_A + E_A$ is a unital subalgebra of $\text{End}_F(A)$, and E_A is an ideal in R_A.

Lemma 1.1 One has $1 E_A \oplus \ldots \oplus A_m = E_A \oplus \ldots \oplus E_A$.

Proof It is clear that $E_A \oplus \ldots \oplus A_m \subset E_A \oplus \ldots \oplus E_A$. Let $a_i \in A_r$, $c \in C(n)$, and $b = \alpha_n(c)(a_1, \ldots, a_{j-1}, ?, a_j, \ldots, a_{n-1}) \in E_A$. Let $b' := (0, \ldots, b, \ldots, 0)$ (where b is at the r-th place). Then we have $b' = \alpha_n(c)(a'_1, \ldots, a'_{j-1}, ?, a'_j, \ldots, a'_{n-1})$, where $a'_i = (0, \ldots, a_i, \ldots, 0)$. Hence $b' \in E_A \oplus \ldots \oplus A_m$. Thus $E_A \oplus \ldots \oplus A_m \supset E_A \oplus \ldots \oplus E_A$. \hfill \square

1.2 Ideals

By an *ideal* in a C-algebra A we mean a subspace $I \subset A$ such that for any $n \geq 1$, $c \in C(n)$, $j \in [1, n]$, and $T \in A^{\otimes j-1} \otimes I \otimes A^{\otimes n-j}$ one has $\alpha_n(..., x, ..., y, ...) = 0$ once $x \in A_i$ and $y \in A_j$ with $j \neq i$, which implies the statement.

Lemma 1.2 (i) $I \subset A$ is an ideal if and only if it is an R_A-submodule of A.

(ii) $A = A_1 \oplus \ldots \oplus A_m$ as an R_A-module if and only if it is so as a C-algebra.

Proof (i) This follows directly from the definition.

(ii) The “if” direction is clear. To prove the “only if” direction, note that by (i) A_i are ideals in A, hence $\alpha_n(..., x, ..., y, ...) = 0$ once $x \in A_i$ and $y \in A_j$ with $j \neq i$, which implies the statement. \hfill \square

It is clear that if $I \subset A$ is an ideal then A/I is a C-algebra, and $E_{A/I}, L_{A/I}, R_{A/I}$ are homomorphic images of E_A, L_A, R_A in $\text{End}_F(A/I)$.

1.3 Simple and Semisimple Algebras

From now on we assume that A is a finite dimensional C-algebra. We say that A is *simple* if any ideal in A is either 0 or A (i.e., A is a simple R_A-module), and $E_A \neq 0$.

Lemma 1.3 If A is a simple C-algebra then $E_A = R_A$, and it is a central simple algebra (over some finite field extension of F).

Proof Since A is a faithful simple R_A-module, R_A is central simple. Since $E_A \neq 0$ and E_A is an ideal in R_A, we have $E_A = R_A$. \hfill \square

1Categorically, it is more natural to regard the direct sum $A_1 \oplus \ldots \oplus A_m$ as a direct product, but there is no difference since it is finite. So, we will call it a direct product, but use the sign \oplus instead of \times to emphasize that our constructions are linear over a field.

2Note that this recovers the standard definition for commutative, associative, and Lie algebras. Moreover, while in the commutative and associative case, the condition $E_A \neq 0$ is automatic for $A \neq 0$ because of the unit axiom, in the Lie case it is needed (as an abelian Lie algebra is not simple). Note also that if $C(n) = 0$ for $n \neq 1$ (i.e., when C is an ordinary algebra), then $E_A = 0$ automatically, so there are no simple C-algebras, even though there may exist simple C-modules.
We say that A is semisimple if A is a direct product of a finite (possibly empty) collection of simple C-algebras: $A = A_1 \oplus ... \oplus A_m$.

Lemma 1.4 Let $A = A_1 \oplus ... \oplus A_m$ be a semisimple C-algebra with simple constituents A_i. Then the only ideals in A are $\oplus_{i \in S} A_i \subset A$, where $S \subset [1, m]$.

Proof Clearly, the subspaces in the lemma are ideals. Conversely, let $I \subset A$ be an ideal. Let $a = (a_1, ..., a_m) \in I$. By Lemmas 1.1 and 1.3, the projection operator $P_i : A \to A$ to A_i along $\oplus_{j \neq i} A_j$ is contained in E_A. Thus, $P_ia = (0, ..., a_i, ..., 0) \in I$. This implies the statement. \qed

1.4 The Radical

Let A' be the maximal semisimple quotient of A as an R_A-module (it exists by the standard theory of finite dimensional algebras). Let \overline{A} be the quotient of A' by the kernel of the action of E_A (which is an R_A-submodule of A). Define the radical $\text{Rad}(A)$ of A to be the kernel of the projection of A onto \overline{A}. So the radical of $A/\text{Rad}(A) = \overline{A}$ is zero. In particular, if A is a semisimple C-algebra, then $\text{Rad}(A) = 0$.

Theorem 1.5 (i) \overline{A} is a semisimple C-algebra. In particular, $\text{Rad}(A) = 0$ if and only if A is semisimple.

(ii) If $I \subset A$ is an ideal, then A/I is a semisimple C-algebra if and only if I contains $\text{Rad}(A)$.

Proof (i) By the definition, \overline{A} is a semisimple R_A-module, such that E_A acts by nonzero on all its simple summands. Hence by Lemma 1.2(ii), \overline{A} is a semisimple C-algebra.

(ii) The “if” direction holds by (i) and Lemma 1.4. To prove the “only if” direction, let $I \subset A$ be an ideal such that A/I is a semisimple C-algebra: $A/I = A_1 \oplus ... \oplus A_m$. Then by Lemma 1.2(ii) A/I is a semisimple $R_{A/I}$-module and hence R_A-module, with simple constituents A_i, and the action of E_A on A_i is nonzero. Thus $I \supset \text{Rad}(A)$. \qed

2 G-Equivariant Simple Algebras Over Operads

Now let G be a finite group, and A be a C-algebra with an action of G. Let us say that A is a simple G-equivariant C-algebra if the only G-invariant ideals in A are 0 and A, and $E_A \neq 0$.

Lemma 2.1 (i) If B is a simple C-algebra then we have $\text{Aut}(B^\otimes n) = S_n \ltimes \text{Aut}(B)^n$.

(ii) If A is a simple G-equivariant C-algebra then A is semisimple as a usual C-algebra. Moreover, G acts transitively on the simple constituents of A, and in particular they are all isomorphic.

Proof (i) Clearly, $S_n \ltimes \text{Aut}(B)^n$ acts on $B^\otimes n$, so we need to show that any automorphism g of $B^\otimes n$ belongs to this group. By Lemma 1.4, the minimal (nonzero) ideals of $B^\otimes n$ are the n copies of B. So they must be permuted by g, inducing an element $s \in S_n$. \qed
Thus $g s^{-1}$ is an automorphism preserving all the copies of B. So $g s^{-1} \in \text{Aut}(B)^n$, as desired.

(ii) Let I be kernel of the projection from A to its maximal semisimple quotient A' as an R_A-module. Then by Lemma 1.2(i), I is a G-invariant ideal in A, and $I \neq A$. Hence $I = 0$, and A is a semisimple R_A-module. So by Lemma 1.2(ii), $A = A_1 \oplus \ldots \oplus A_m$ is a semisimple C-algebra. Thus by Lemma 1.4, the minimal ideals of A are the A_i. So they are permuted by G. Moreover, the action of G on these ideals must be transitive, as every orbit gives a nonzero G-invariant ideal.

Now let B be a simple C-algebra, H a subgroup of G, and $\phi : H \to \text{Aut}(B)$ a homomorphism. Let $A = \text{Fun}_H(G, B)$ be the space of H-invariant functions on G with values in B. Then it is clear that A has a natural structure of a simple G-equivariant C-algebra, isomorphic to $B^{|G/H|}$ as a usual C-algebra. Note that the stabilizer of any minimal ideal of A is a subgroup of G conjugate to H.

Theorem 2.2 Any simple G-equivariant C-algebra A is of the form $A = \text{Fun}_H(G, B)$. Moreover, the subgroup H is defined by A uniquely up to conjugation in G, and ϕ is defined uniquely up to conjugation in $\text{Aut}(B)$.

Proof By Lemma 2.1(ii), G acts transitively on the set of minimal ideals in A, and they are all isomorphic to some simple C-algebra B. Thus, the result follows from Lemma 2.1(i) and the standard classification of transitive homomorphisms $G \to S_n \rtimes \text{Aut}(B)^n$. Namely, let H be the stabilizer of one of the copies of B. Then H acts on B through some homomorphism $\phi : H \to \text{Aut}(B)$. Moreover, we have a canonical G-equivariant linear map $\psi : A \to \text{Fun}_H(G, B)$ corresponding via Frobenius reciprocity to the H-stable projection $A \to B$ to the chosen copy of B along the direct product of all the other copies. It is easy to check using Lemma 2.1 that ψ is an isomorphism of G-equivariant C-algebras. The rest is easy. \qed

Remark 2.3

1. Note that in the examples of commutative, associative, and Lie algebras we obtain the classical theorems about classification of simple G-equivariant algebras of these types.

2. Lemma 2.1 and Theorem 2.2 don’t hold without the assumption $E_A \neq 0$. E.g., one may take A to be any irreducible representation of G equipped with the zero Lie bracket.

3. The results of this section extend verbatim to the case when G is any group (not necessarily finite), or is an affine algebraic group over F. Namely, as in the finite group case, the classification of simple G-equivariant algebras reduces to classification of transitive homomorphisms $G \to S_n \rtimes \text{Aut}(B)^n$, which are paramertized by finite index subgroups H of G and homomorphisms $\phi : H \to \text{Aut}(B)$ up to conjugation.

Remark 2.4 While the question of classification of G-equivariant simple algebras over operads is natural in its own right, the motivation for writing this note was to provide a more general context for the results of [2]. Namely, Lemma 2.1 and Theorem 2.2 allow one to extend the main result of [2] (Theorem 5.5 on the classification of simple commutative algebras in the Deligne category $\text{Rep}(S_t)$) to algebras over a finitely generated linear operad C over \mathbb{C}. Informally speaking, this generalization says that for transcendental t any such algebra is obtained by induction from $\text{Rep}(G) \boxtimes \text{Rep}(S_{t-k})$ of an interpolation B of a family of
$G \times S_{n-k}$-equivariant simple algebras B_n, defined for some strictly increasing sequence of positive integers n and depending algebraically on n.

This gives a classification of simple C-algebras in $\text{Rep}(S_r)$ whenever a classification of ordinary simple C-algebras (and their automorphisms) is available. For instance, in the case of associative unital algebras, $B = \text{End}(V)$, where V is an object of $\text{Rep}(S_r)$, and in the case of Lie algebras $B = \mathfrak{sl}(V)$, $\mathfrak{o}(V)$, or $\mathfrak{sp}(V)$, where in the second case V is equipped with a nondegenerate symmetric form and in the third case with a nondegenerate skew-symmetric form.

The proof of this generalization is similar to the proof of Theorem 5.5 of [2], which covers the case of commutative unital algebras (in which case $B = \mathbb{C}$), but is somewhat more complicated since in general $\text{Aut}(B) \neq 1$. The finite generation assumption for C is needed to validate the constructibility arguments of [2], Section 4. This will be discussed in more detail elsewhere.

Acknowledgments The author is grateful to Nate Harman for useful discussions. The work of the author was partially supported by the NSF grant DMS-1502244.

References