Measurement of the differential cross sections for top quark pair production as a function of kinematic event variables in pp collisions at $s = 7$ and 8 TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevD.94.052006</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Tue Mar 12 04:38:20 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/107621</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution 3.0 Unported license</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/3.0/</td>
</tr>
</tbody>
</table>
Measurement of the differential cross sections for top quark pair production as a function of kinematic event variables in \(pp \) collisions at \(\sqrt{s} = 7 \) and 8 TeV

V. Khachatryan et al.
(CMS Collaboration)
(Received 4 July 2016; published 8 September 2016)

Measurements are reported of the normalized differential cross sections for top quark pair production with respect to four kinematic event variables: the missing transverse energy; the scalar sum of the jet transverse momentum \((p_T) \); the scalar sum of the \(p_T \) of all objects in the event; and the \(p_T \) of leptonically decaying \(W \) bosons from top quark decays. The data sample, collected using the CMS detector at the LHC, consists of 5.0 fb\(^{-1}\) of proton-proton collisions at \(\sqrt{s} = 7 \) TeV and 19.7 fb\(^{-1}\) at \(\sqrt{s} = 8 \) TeV. Top quark pair events containing one electron or muon are selected. The results are presented after correcting for detector effects to allow direct comparison with theoretical predictions. No significant deviations from the predictions of several standard model event simulation generators are observed.

DOI: 10.1103/PhysRevD.94.052006

I. INTRODUCTION

The CERN LHC produced millions of top quark pairs (\(t\bar{t} \)) in 2011 and 2012. This allows for a detailed investigation of the kinematic event properties of \(t\bar{t} \) production such as the missing transverse energy \((E_T^{\text{miss}}) \), the scalar sum of the jet transverse momenta \((H_T) \), the scalar sum of the transverse momenta of all objects \((S_T) \), and the transverse momentum \((p_T^W) \) of leptonically decaying \(W \) bosons produced in top quark decays. These measurements can be used to verify current theoretical models, along with their implementation in simulations of \(t\bar{t} \) production, and also to measure rare standard model (SM) processes such as \(t\bar{t} \) production in association with a \(W, Z \), or Higgs boson. Since top quark pair production is a major background for many searches for physics beyond the SM, it is important that the properties of \(t\bar{t} \) events are well understood.

Here, we report measurements carried out using the CMS detector\([1]\) at the LHC at two different proton-proton center-of-mass energies. The data samples used include integrated luminosities of 5.0 fb\(^{-1}\) collected in 2011 at \(\sqrt{s} = 7 \) TeV and 19.7 fb\(^{-1}\) from 2012 at \(\sqrt{s} = 8 \) TeV. The \(t\bar{t} \) production cross section is measured as a function of \(E_T^{\text{miss}}, H_T, S_T \), and \(p_T^W \), corrected for detector effects, and compared with the predictions from different event generators. Differential \(t\bar{t} \) cross sections have previously been measured at the Tevatron\([2,3]\), and at the LHC\([4–9]\). These previous measurements study the \(t\bar{t} \) production cross section as a function of the top quark kinematics and the kinematics of the \(t\bar{t} \) system. The results presented here are complementary, since the \(t\bar{t} \) production cross section is measured as a function of variables that do not require the reconstruction of the top quarks from their decay products.

Top quarks decay with close to 100% probability into a \(W \) boson and a bottom quark. In this article, we consider the channel in which one of the \(W \) bosons decays leptonically into a charged lepton (electron or muon) along with its associated neutrino, while the other \(W \) boson decays hadronically. This channel has a branching fraction of around 15% for direct decay to each lepton flavor and a relatively clean experimental signature, including an isolated, high-transverse-momentum lepton, large \(E_T^{\text{miss}} \) from the undetected neutrino, and multiple hadronic jets. Two jets are expected to contain \(b \) hadrons from the hadronization of the \(b \) quarks produced directly in the \(t \rightarrow bW \) decay, while other jets (from the hadronic \(W \) boson decay or gluon radiation) will typically contain only light and charm quarks.

II. THE CMS DETECTOR

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. Extensive forward calorimetry complements the coverage provided by the barrel and endcap detectors.

A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [1].

III. SIMULATION

For the Monte Carlo (MC) simulation of the \(t\bar{t} \) signal sample the leading-order MadGraph v5.1.5.11 event
generator \cite{10} is used with relevant matrix elements for up to three additional partons implemented. Theoretical production cross section values of $173.3^{+4.6}_{-3.0}$ (scale) ± 9.0 (PDF + α_s) pb at $\sqrt{s} = 7$ TeV, and $252.9^{+6.4}_{-8.6}$ (scale) ± 11.7 (PDF + α_s) pb at $\sqrt{s} = 8$ TeV, are used for the normalization of these samples. These cross sections are calculated with the Top++2.0 program to next-to-next-to-leading order (NNLO) in perturbative QCD, including soft-gluon resummation to next-to-next-to-leading-logarithm (NNLL) order \cite{11}, and assuming a top quark mass $m_t = 172.5$ GeV. The first uncertainty comes from the independent variation of the renormalization (μ_R) and factorization (μ_F) scales, while the second one is associated with variations in the parton distribution function (PDF) and α_s, following the PDF4LHC prescription with the MSTW2008 68\% CL NNLO, CT10 NNLO, and NNPDF2.3 5f FFN PDF sets \cite{12,13,14}.

The generated events are subsequently processed with PYTHIA v6.426 \cite{17} for parton showering and hadronization. The PYTHIA parton shower is matched to the jets from the hard quantum chromodynamics (QCD) matrix element via the MLM prescription \cite{18} with a transverse momentum (p_T) threshold of 20 GeV. The CMS detector response is simulated using GEANT4 \cite{19}.

Independent $t\bar{t}$ samples are also generated at both $\sqrt{s} = 7$ TeV and $\sqrt{s} = 8$ TeV with POWHEG v2 r2819 [20–22]. At 8 TeV, additional samples are generated with both MC@NLO v3.41 [23] and POWHEG v1.0 r1380 [20–22]. All of the POWHEG samples are interfaced with both PYTHIA and HERWIG v6.520 [24], whereas the MC@NLO generator is interfaced with HERWIG for parton showering. These samples, which are all generated to next-to-leading order accuracy, are used for comparison with the final results.

The most significant backgrounds to $t\bar{t}$ production are events in which a W boson is produced in association with additional jets. Other backgrounds include single top quark production, Z boson production in association with multiple jets, and QCD multijet events where hadronic activity is misidentified as a lepton. The simulation of background from W and Z boson production in association with jets is also performed using the combination of MADGRAPH and PYTHIA, with a p_T matching threshold of 10 GeV in this case. These samples are referred to as $W +$ jets and $Z +$ jets, respectively. Single top quark production via t- and s-channel W boson exchange \cite{25} and with an associated on-shell W boson \cite{26} are generated using POWHEG. The QCD multijet processes are simulated using PYTHIA. The event yields of the background processes are normalized according to their predicted production cross section values. These are from NNLO calculations for $W +$ jets and $Z +$ jets events \cite{27,28}, next-to-leading order calculations with NNLL corrections for single top quark events \cite{29}, and leading-order calculations for QCD multijet events \cite{17}.

Samples are generated using the CTEQ6L1 PDFs \cite{30} for MADGRAPH samples, the CT10 PDFs \cite{31} for POWHEG samples, and the CTEQ6M PDFs \cite{30} for MC@NLO. The PYTHIA Z2 tune is used to describe the underlying event in both the MADGRAPH and POWHEG+PYTHIA samples at $\sqrt{s} = 7$ TeV, whereas the Z2*$ tune is used for the corresponding samples at $\sqrt{s} = 8$ TeV \cite{32}. The underlying event in the POWHEG+HERWIG samples is described by the AUET2 tune \cite{33}, whereas the default tune is used in the MC@NLO+HERWIG sample.

The value of the top quark mass is fixed to $m_t = 172.5$ GeV in all samples. In all cases, PYTHIA is used for simulating the gluon radiation and fragmentation, following the prescriptions of Ref. \cite{34}. Additional simulated hadronic pp interactions (“pileup”), in the same or nearby beam crossings, are overlaid on each simulated event to match the high-luminosity conditions in actual data taking.

Previous measurements of differential $t\bar{t}$ production cross sections at the LHC \cite{4,5,8} showed that several of the $t\bar{t}$ event generators considered in this analysis predict a harder top quark p_T spectrum than that observed in data. An additional simulated $t\bar{t}$ sample is considered here, where the sample produced with the MADGRAPH event generator is reweighted to improve the agreement of the top quark p_T spectrum with data.

IV. EVENT RECONSTRUCTION AND SELECTION

Parallel selection paths for the two lepton types are implemented, resulting in samples classified as electron + jets and muon + jets. The trigger for the electron + jets channel during the $\sqrt{s} = 7$ TeV data taking selects events containing an electron candidate with $p_T > 25$ GeV and at least three reconstructed hadronic jets with $p_T > 30$ GeV. In the $\sqrt{s} = 8$ TeV data, at least one electron candidate with $p_T > 27$ GeV is required, with no additional requirement for jets. In the muon + jets channel, at least one isolated muon candidate with $p_T > 24$ GeV is required at the trigger level. Each candidate event is required to contain at least one well-measured vertex \cite{35}, located within the pp luminous region in the center of CMS.

Events are reconstructed using a particle-flow (PF) technique \cite{36,37}, which combines information from all subdetectors to optimize the reconstruction and identification of individual long-lived particles.

Electron candidates are selected with a multivariate technique using calorimetry and tracking information \cite{38}. Inputs to the discriminant include information about the calorimeter shower shape, track quality, track-shower matching, and a possible photon conversion veto. Electron candidates are required to have $E_T > 30$ GeV and pseudorapidity in the range $|\eta| < 2.5$. The low-efficiency region $1.44 < |\eta| < 1.57$ between the barrel and endcap sections of the detector is excluded. Muon candidates are selected with tight requirements on track and vertex quality, and on hit multiplicity in the tracker and muon detectors \cite{39}.

These requirements suppress cosmic rays, misidentified muons, and nonprompt muons from decay of hadrons in
flight. Muon candidates are required to have \(p_T > 26 \text{ GeV} \) and \(|\eta| < 2.1 \).

For the lepton isolation requirement, a cone of size \(\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} \) is constructed around the lepton direction, where \(\Delta \eta \) and \(\Delta \phi \) are the differences in pseudorapidity and azimuthal angle (in radians), respectively, between the directions of the lepton and another particle. The \(p_T \) values of charged and neutral particles found in this cone are summed, excluding the lepton itself and correcting for the effects of pileup [38]. The relative isolation variable \(I(\Delta R) \) is defined as the ratio of this sum to the lepton \(p_T \). Lepton candidates are selected if they satisfy \(I(0.3) < 0.1 \) for electrons, and \(I(0.4) < 0.12 \) for muons.

Reconstructed particles are clustered into jets using the anti-\(k_T \) algorithm [40] with a distance parameter of 0.5. The measured \(p_T \) of each jet is corrected [41] for known nonuniformities in response as a function of \(\phi \) [46]. The jet energy is also corrected for the extra energy deposition from pileup interactions [42,43]. Jets are required to pass loose identification requirements to remove calorimeter noise [44]. Any such jet whose direction is less than \(\Delta R = 0.3 \) from the identified lepton direction is removed. For the identification of \(b \) quark jets (“\(b \) tagging”), a “combined secondary vertex” algorithm [45] is used, taking into account the reconstructed secondary vertices and track-based lifetime information. The \(b \) tagging threshold is chosen to give an acceptance of 1% for light-quark and gluon jets with an efficiency for signal events to satisfy the final selection criteria is about 8%, as determined from simulation.

V. CROSS SECTION MEASUREMENTS

We study the normalized \(t\bar{t} \) differential production cross section as a function of four kinematic event variables: \(E_T^{\text{miss}} \), \(H_T \), \(S_T \), and \(p_T^W \).

The variable \(E_T^{\text{miss}} \) is the magnitude of the missing transverse momentum vector \(\vec{p}_T^{\text{miss}} \), which is defined as the projection on the plane perpendicular to the beams of the negative vector sum of the momenta of all PF candidates in the event:

\[
E_T^{\text{miss}} = \left[\left(-\sum_i p_x^i \right)^2 + \left(-\sum_i p_y^i \right)^2 \right]^{1/2},
\]

where \(p_x^i \) and \(p_y^i \) are the \(x \) and \(y \) momentum components of the \(i \)th candidate, and the sums extend over all PF candidates. The measured \(E_T^{\text{miss}} \) is corrected for pileup and nonuniformities in response as a function of \(\phi \) [46].

The variable \(H_T \) is defined as the scalar sum of the transverse momenta of all jets in the event,

\[
H_T = \sum_{\text{all jets}} p_T^{\text{jet}},
\]

where the sum extends over all jets having \(p_T > 20 \text{ GeV} \) and \(|\eta| < 2.5 \).

Finally, \(p_T^W \) is the magnitude of the transverse momentum of the leptonically decaying \(W \) boson, which is derived from the momentum of the isolated lepton and \(\vec{p}_T^{\text{miss}} \)

\[
p_T^W = \sqrt{(\vec{p}_x^{\text{lepton}} + p_x^{\text{miss}})^2 + (\vec{p}_y^{\text{lepton}} + p_y^{\text{miss}})^2},
\]

where \(p_x^{\text{lepton}} \) and \(p_y^{\text{lepton}} \) are the transverse components of \(\vec{p}_T^{\text{lepton}} \), and \(p_x^{\text{miss}} \) and \(p_y^{\text{miss}} \) are the transverse components of \(\vec{p}_T^{\text{miss}} \).

Figures 1 and 2 show the observed distributions of \(E_T^{\text{miss}} \), \(H_T \), \(S_T \), and \(p_T^W \), in the \(\sqrt{s} = 8 \text{ TeV} \) data samples, compared to the sum of the corresponding signal and background distributions from simulation.

For simulated \(t\bar{t} \) signal events, these four kinematic variables are also calculated using the momenta of particles in the event, before the simulation of the detector response. We refer to the quantities calculated in this way as the generated variables. The generated value of \(E_T^{\text{miss}} \) is the magnitude of the vector sum of the \(p_T \) of all neutrinos in the event. The generated \(H_T \) is the sum of the magnitudes of the \(p_T \) of these jets with \(p_T > 20 \text{ GeV} \) and \(|\eta| < 2.5 \). The generated values of \(S_T \) and \(p_T^W \) are calculated in the same way as the corresponding reconstructed variables, using the \(\vec{p}_T \) of the charged lepton from the leptonic decay of a \(W \) boson coming from \(t \to bW \) decay.
The choice of bin widths for this measurement is optimized separately for each kinematic event variable to minimize the migration between bins. This optimization is based on three criteria: (i) of the simulated signal events for which the value of the generated variable falls in the bin, at least 50% are required to have the reconstructed variable in the same bin (this is sensitive to migration of events out of the bin); (ii) of the simulated signal events for which the value of the reconstructed variable falls in the bin, at least 50% are required to have the generated variable in the same bin (this is sensitive to migration of events into the bin); (iii) the number of reconstructed simulation events in a bin is required to be more than 100. These criteria ensure that bin-to-bin migrations are kept small, while allowing a differential cross section measurement with reasonable granularity.

The number of control region where the selection criteria are modified to enrich the contribution of QCD multijet events. In the electron $+$ jets...
channel, the control region is obtained by inverting the photon conversion veto on the electron. In addition to this, the number of b-tagged jets is required to be exactly zero. The small contamination of $t\bar{t}$, single top, W + jets, and Z + jets events in this control region, as estimated from simulation, is subtracted from the data. Then, the ratio of simulated QCD multijet events in the control region and the signal region is used to scale the normalization of the data-driven QCD multijet estimate from the control region to the signal region in the data. The control region in the muon $+\text{jets}$ channel is obtained by inverting the isolation criterion on the muon in the selected events, and by requiring exactly zero b-tagged jets. The jet selection criterion is also modified, requiring at least three jets. The same procedure is then followed to estimate the contribution of QCD multijet events in the muon + jets signal region.

The number of $t\bar{t}$ events from data in each bin is then corrected for the small fractions of dileptonic, all-hadronic, and tau $t\bar{t}$ events in the final sample, as determined from simulation, and for experimental effects, such as detector resolution, acceptance, and efficiency. This correction is performed by constructing a response matrix that maps the generated values to the reconstructed values for the four kinematic variables in the simulated $t\bar{t}$ signal events. The response matrix is constructed using the MADGRAPH $t\bar{t}$ sample. This matrix is then inverted, using regularized
singuar-value decomposition [47] in the RooUNFOLD software framework. Since we impose no requirements on the generated events, the procedure corrects to the full signal phase space.

The fully corrected numbers of $t\bar{t}$ events in the electron + jets and muon + jets channels yield consistent results. These are then added and used to calculate the normalized $t\bar{t}$ differential production cross section with respect to each kinematic event variable, X, using

$$\frac{1}{\sigma} \frac{d\sigma}{dX} = \frac{1}{N} \frac{x_j}{\Delta x_j},$$

where x_j represents the number of unfolded signal events in bin j, Δx_j is the width of bin j, σ is the total $t\bar{t}$ production cross section, and $N = \sum_i x_i$ is the total number of unfolded signal events.

VI. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties in the experimental and theoretical input quantities are evaluated and propagated to the final results, taking correlations into account. Since the final result is normalized to the total number of events, the effect of uncertainties that are correlated across all bins is negligible. As such, only uncertainties that affect the shape of the measured distributions are significant.

The uncertainty coming from the choice of renormalization and factorization scales in the physics modeling of $t\bar{t}$ events is determined by producing two additional simulated event samples. These samples are generated with both scales simultaneously varied by a factor of two up or down from their default values equal to the Q of the hard process in the event; Q is defined via $Q^2 = m_T^2 + \sum p_T^2$, where the sum is over all additional final-state partons in the matrix element. The effect of varying the renormalization and factorization scales in the $W +$ jets and $Z +$ jets samples is also considered to determine the uncertainty in the shape of this background. The uncertainty arising from the choice of parton shower matching threshold in the event generation is determined in a similar fashion, using additional samples in which the threshold is varied up or down. Uncertainties from the modeling of the hadronization are evaluated by comparing POWHEG v1 simulated samples with two different hadron shower generators (PYTHIA and HERWIG). The uncertainty owing to the choice of the PDF is determined by reweighting the simulated events and repeating the analysis using the 44 CTEQ6L PDF error sets [30]. The maximum variation is taken as the uncertainty. Simulated samples with the top quark mass varied by ± 1 GeV, which corresponds to the precision of the measured top quark mass [49], are generated to evaluate the effect of the uncertainty in this parameter. The effect of reweighting the top quark p_T spectrum in simulation, as described in Sec. III, is found to have a negligible effect for low values of the kinematic event variables, and increases to 3%-7% for the highest values.

Other uncertainties are associated with imperfect understanding of efficiencies, resolutions, and scales describing the detector response. The uncertainty arising from each source is estimated, and the analysis repeated with each corresponding parameter varied within its uncertainty.

The efficiencies and associated uncertainties for triggering and lepton identification are determined from data by a tag-and-probe method [50]. The probabilities for identifying and misidentifying b jets in the simulation are compared to those measured in data, and the resulting correction factors and their uncertainties are determined as a function of jet energy and quark flavor. The uncertainties in the correction factors are typically 2%.

The uncertainty in the jet energy scale (JES) is determined as a function of the jet p_T and η [41], and an uncertainty of 10% is included in the jet energy resolution (JER) [41]. The effect of this limited knowledge of the JES and JER is determined by varying the JES and JER in the simulated samples within their uncertainties. The uncertainty in the JES and JER, as well as uncertainties in the electron, photon, tau, and muon energy scale, are propagated into the calculation of E_T^{miss}. The uncertainty in the electron and photon energy scale is 0.6% in the barrel, and 1.5% in the endcap [38]. The uncertainty in the tau lepton energy scale is estimated to be $\pm 3\%$ [51], while the effect of the uncertainty in the muon momentum measurement is found to be negligible. A 10% uncertainty is assigned to the

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
Uncertainty source & E_T^{miss} & H_T & S_T & p_T^W \\
\hline
Fact./Renorm. scales and matching threshold & 7.6 & 4.0 & 2.6 & 3.3 \\
Hadronization & 4.3 & 5.0 & 8.5 & 3.0 \\
PDF & 0.5 & 0.6 & 0.6 & 0.4 \\
Top quark mass & 0.4 & 0.7 & 0.8 & 0.3 \\
Top quark p_T reweighting & 1.4 & 0.9 & 0.6 & 0.6 \\
Lepton trigger efficiency & <0.1 & <0.1 & <0.1 & <0.1 \\
b tagging & 0.3 & 0.1 & 0.3 & <0.1 \\
Jet energy scale & 0.3 & 0.2 & 0.3 & <0.1 \\
Jet energy resolution & <0.1 & <0.1 & <0.1 & <0.1 \\
E_T^{miss} & 0.2 & \cdots & <0.1 & 0.1 \\
Pileup & 0.4 & <0.1 & 0.1 & 0.2 \\
Background normalization & 2.6 & 1.0 & 2.1 & 1.4 \\
QCD shape & 0.4 & 0.2 & 0.5 & 0.4 \\
Total & 9.9 & 8.6 & 9.5 & 4.4 \\
\hline
\end{tabular}
\caption{Typical relative systematic uncertainties in percent (median values) in the normalized $t\bar{t}$ differential cross section measurement as a function of the four kinematic event variables at a center-of-mass energy of 8 TeV (combination of electron and muon channels). Typical values of the total systematic uncertainty are also shown.}
\end{table}
The effect of the uncertainty in the level of pileup is estimated by varying the inelastic pp cross section used in the simulation by $\pm5\%$ [52]. The uncertainty in the normalization of the background is determined by varying the normalization of the single top, $W +$ jets, and $Z +$ jets processes by $\pm30\%$, and the QCD multijet processes by $\pm100\%$. The uncertainty in the shape of the QCD multijet distribution in the electron channel is estimated by using an alternative control region in data to determine the contribution of QCD multijet events. This uncertainty is found to have a negligible effect. The dominant systematic effects are caused by the uncertainties in the modeling of the hadronization and the $t\bar{t}$ signal. For illustrative purposes, typical systematic uncertainties in the $\sqrt{s} = 8$ TeV results coming from each of the sources described above are presented in Table I. The values shown for each kinematic event variable are the median uncertainties over all of the bins for that variable.
VII. RESULTS

The normalized differential $t\bar{t}$ cross sections as a function of each of the kinematic event variables are shown in Figs. 3 and 4 for the $\sqrt{s} = 7$ TeV data, and in Figs. 5 and 6 for the $\sqrt{s} = 8$ TeV data. The results are also presented in Tables II–IX of the Appendix.

The data distributions in the figures are compared with the predictions from the event generators in the left-hand plots: MadGraph and PowHeq v2 with two different hadron shower generators, PyThia and Herwig. For the $\sqrt{s} = 8$ TeV results, the predictions from the MC@NLO and PowHeq v1 generators are also shown. The effect on the predicted distributions from varying the modeling parameters (the matching threshold and renormalization scale Q^2) up and down by a factor of 2 for the MadGraph event generator is shown in the right-hand plots for the two MadGraph simulations. The uncertainties shown by the vertical bars on the points in the figures and given in the tables include both the statistical uncertainties and those resulting from the unfolding procedure.
The measurements at $\sqrt{s} = 7 \text{ TeV}$ are well described by all the event generators in the distribution of $E_{\text{T}}^{\text{miss}}$. For S_T, p_T^W, and H_T, the event generators predict a somewhat harder spectrum than seen in data. However, the POWHEG V2+PYTHIA event generator provides a reasonable description of the H_T and S_T differential cross sections.

The results at $\sqrt{s} = 8 \text{ TeV}$ are generally well described by the MC@NLO and the POWHEG V2+PYTHIA event generators. The POWHEG V2+HERWIG event generator describes the $E_{\text{T}}^{\text{miss}}$ and p_T^W distributions well. However, for H_T and S_T this event generator predicts a harder spectrum than seen in data, at both center-of-mass energies.

The MADGRAPH event generator generally predicts a harder spectrum than seen in data for all variables. The variations in matching threshold and Q^2 in the MADGRAPH event generator are not sufficient to explain this difference between the prediction and data. However, the MADGRAPH event generator provides a good description of the data after
reweighting the top quark p_T spectrum, as described in Sec. III. The prediction obtained from the MADGRAPH event generator after the reweighting is shown on all the plots.

VIII. SUMMARY

A measurement of the normalized differential cross section of top quark pair production with respect to the four kinematic event variables E_T^{miss}, H_T, S_T, and p_T^{W} has been performed in pp collisions at a center-of-mass energy of 7 TeV using 5.0 fb$^{-1}$ and at 8 TeV using 19.7 fb$^{-1}$ of data collected by the CMS experiment.

This study confirms previous CMS findings that the observed top quark p_T spectrum is softer than predicted by the MADGRAPH, POWHEG, and MC@NLO event generators, but otherwise there is broad consistency between the MC event generators and observation. This result provides confidence in the description of $t\bar{t}$ production in the SM and its implementation in the most frequently used simulation packages.
MEASUREMENT OF THE DIFFERENTIAL CROSS ...

ACKNOWLEDGMENTS

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing centers and personnel of the Worldwide

APPENDIX: ADDITIONAL TABLES

The measured values of the $\ell\ell$ differential cross sections as a function of $E_{\text{T},\text{miss}}$, H_{T}, S_{ℓ}, and p_{T}^{ℓ} for \sqrt{s} = 7 TeV and \sqrt{s} = 8 TeV are given in the Tables II–IX below, along with their statistical, systematic, and total uncertainties.

TABLE II. Normalized $\ell\ell$ differential cross section measurements with respect to the $E_{\text{T},\text{miss}}$ variable at a center-of-mass energy of 7 TeV (combination of electron and muon channels). The rightmost three columns show the relative uncertainties on the measured values, in percent. The statistical and systematic uncertainties are listed separately, and are combined in quadrature to give the overall relative uncertainty.

<table>
<thead>
<tr>
<th>$E_{\text{T},\text{miss}}$ (GeV)</th>
<th>$1/\sigma,d\sigma/dE_{\text{T},\text{miss}}$ (GeV$^{-1}$)</th>
<th>\pmstat (%)</th>
<th>\pmsyst (%)</th>
<th>Relative uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–27</td>
<td>6.44×10^{-3}</td>
<td>0.83</td>
<td>4.5</td>
<td>4.6</td>
</tr>
<tr>
<td>27–52</td>
<td>1.32×10^{-2}</td>
<td>0.60</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>52–87</td>
<td>8.75×10^{-3}</td>
<td>0.58</td>
<td>1.9</td>
<td>2.0</td>
</tr>
<tr>
<td>87–130</td>
<td>3.14×10^{-3}</td>
<td>0.80</td>
<td>6.0</td>
<td>6.0</td>
</tr>
<tr>
<td>130–172</td>
<td>8.93×10^{-4}</td>
<td>1.1</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>172–300</td>
<td>1.32×10^{-4}</td>
<td>1.4</td>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>

TABLE III. Normalized $\ell\ell$ differential cross section measurements with respect to the H_{T} variable at a center-of-mass energy of 7 TeV (combination of electron and muon channels). The rightmost three columns show the relative uncertainties on the measured values, in percent. The statistical and systematic uncertainties are listed separately, and are combined in quadrature to give the overall relative uncertainty.

<table>
<thead>
<tr>
<th>H_{T} (GeV)</th>
<th>$1/\sigma,d\sigma/dH_{T}$ (GeV$^{-1}$)</th>
<th>\pmstat (%)</th>
<th>\pmsyst (%)</th>
<th>Relative uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120–185</td>
<td>2.48×10^{-3}</td>
<td>1.5</td>
<td>6.8</td>
<td>6.9</td>
</tr>
<tr>
<td>185–215</td>
<td>4.86×10^{-3}</td>
<td>1.4</td>
<td>5.5</td>
<td>5.7</td>
</tr>
<tr>
<td>215–247</td>
<td>4.89×10^{-3}</td>
<td>1.3</td>
<td>4.4</td>
<td>4.6</td>
</tr>
<tr>
<td>247–283</td>
<td>4.05×10^{-3}</td>
<td>1.2</td>
<td>2.8</td>
<td>3.1</td>
</tr>
<tr>
<td>283–323</td>
<td>2.99×10^{-3}</td>
<td>1.1</td>
<td>2.9</td>
<td>3.1</td>
</tr>
<tr>
<td>323–365</td>
<td>2.06×10^{-3}</td>
<td>1.1</td>
<td>5.4</td>
<td>5.6</td>
</tr>
<tr>
<td>365–409</td>
<td>1.37×10^{-3}</td>
<td>1.1</td>
<td>7.0</td>
<td>7.1</td>
</tr>
<tr>
<td>409–458</td>
<td>8.93×10^{-4}</td>
<td>1.1</td>
<td>9.3</td>
<td>9.4</td>
</tr>
<tr>
<td>458–512</td>
<td>5.49×10^{-4}</td>
<td>1.2</td>
<td>9.9</td>
<td>10</td>
</tr>
<tr>
<td>512–570</td>
<td>3.38×10^{-4}</td>
<td>1.4</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>570–629</td>
<td>2.04×10^{-4}</td>
<td>1.8</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>629–691</td>
<td>1.25×10^{-4}</td>
<td>2.2</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>691–769</td>
<td>7.20×10^{-5}</td>
<td>2.7</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>769–1000</td>
<td>2.51×10^{-5}</td>
<td>3.0</td>
<td>17</td>
<td>17</td>
</tr>
</tbody>
</table>
TABLE IV. Normalized $\bar{t}t$ differential cross section measurements with respect to the S_T variable at a center-of-mass energy of 7 TeV (combination of electron and muon channels). The rightmost three columns show the relative uncertainties on the measured values, in percent. The statistical and systematic uncertainties are listed separately, and are combined in quadrature to give the overall relative uncertainty.

<table>
<thead>
<tr>
<th>S_T (GeV)</th>
<th>$1/\sigma d\sigma/dS_T$ (GeV$^{-1}$)</th>
<th>\pmstat (%)</th>
<th>\pmsyst (%)</th>
<th>Relative uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>146–277</td>
<td>1.31×10^{-3}</td>
<td>1.2</td>
<td>8.4</td>
<td>8.5</td>
</tr>
<tr>
<td>277–319</td>
<td>4.12×10^{-3}</td>
<td>1.1</td>
<td>6.7</td>
<td>6.8</td>
</tr>
<tr>
<td>319–361</td>
<td>4.05×10^{-3}</td>
<td>1.0</td>
<td>4.2</td>
<td>4.3</td>
</tr>
<tr>
<td>361–408</td>
<td>3.18×10^{-3}</td>
<td>0.91</td>
<td>1.8</td>
<td>2.0</td>
</tr>
<tr>
<td>408–459</td>
<td>2.21×10^{-3}</td>
<td>0.93</td>
<td>4.5</td>
<td>4.6</td>
</tr>
<tr>
<td>459–514</td>
<td>1.44×10^{-3}</td>
<td>1.0</td>
<td>8.1</td>
<td>8.2</td>
</tr>
<tr>
<td>514–573</td>
<td>8.96×10^{-4}</td>
<td>1.1</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>573–637</td>
<td>5.42×10^{-4}</td>
<td>1.2</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>637–705</td>
<td>3.25×10^{-4}</td>
<td>1.3</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>705–774</td>
<td>1.95×10^{-4}</td>
<td>1.6</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>774–854</td>
<td>1.13×10^{-4}</td>
<td>1.9</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>854–940</td>
<td>6.32×10^{-5}</td>
<td>2.3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>940–1200</td>
<td>2.26×10^{-5}</td>
<td>2.7</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

TABLE V. Normalized $\bar{t}t$ differential cross section measurements with respect to the p_T^W variable at a center-of-mass energy of 7 TeV (combination of electron and muon channels). The rightmost three columns show the relative uncertainties on the measured values, in percent. The statistical and systematic uncertainties are listed separately, and are combined in quadrature to give the overall relative uncertainty.

<table>
<thead>
<tr>
<th>p_T^W (GeV)</th>
<th>$1/\sigma d\sigma/dp_T^W$ (GeV$^{-1}$)</th>
<th>\pmstat (%)</th>
<th>\pmsyst (%)</th>
<th>Relative uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–27</td>
<td>3.58×10^{-3}</td>
<td>1.3</td>
<td>3.8</td>
<td>4.1</td>
</tr>
<tr>
<td>27–52</td>
<td>8.56×10^{-3}</td>
<td>0.96</td>
<td>3.4</td>
<td>3.6</td>
</tr>
<tr>
<td>52–78</td>
<td>9.33×10^{-3}</td>
<td>0.81</td>
<td>2.5</td>
<td>2.6</td>
</tr>
<tr>
<td>78–105</td>
<td>7.06×10^{-3}</td>
<td>0.96</td>
<td>1.9</td>
<td>2.1</td>
</tr>
<tr>
<td>105–134</td>
<td>4.28×10^{-3}</td>
<td>1.2</td>
<td>4.1</td>
<td>4.2</td>
</tr>
<tr>
<td>134–166</td>
<td>2.20×10^{-3}</td>
<td>1.3</td>
<td>6.1</td>
<td>6.2</td>
</tr>
<tr>
<td>166–200</td>
<td>1.02×10^{-3}</td>
<td>1.6</td>
<td>8.0</td>
<td>8.1</td>
</tr>
<tr>
<td>200–237</td>
<td>4.56×10^{-4}</td>
<td>2.2</td>
<td>9.9</td>
<td>10</td>
</tr>
<tr>
<td>237–300</td>
<td>1.63×10^{-4}</td>
<td>2.9</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>

TABLE VI. Normalized $\bar{t}t$ differential cross section measurements with respect to the E_T^{miss} variable at a center-of-mass energy of 8 TeV (combination of electron and muon channels). The rightmost three columns show the relative uncertainties on the measured values, in percent. The statistical and systematic uncertainties are listed separately, and are combined in quadrature to give the overall relative uncertainty.

<table>
<thead>
<tr>
<th>E_T^{miss} (GeV)</th>
<th>$1/\sigma d\sigma/dE_T^{\text{miss}}$ (GeV$^{-1}$)</th>
<th>\pmstat (%)</th>
<th>\pmsyst (%)</th>
<th>Relative uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–27</td>
<td>5.90×10^{-3}</td>
<td>0.59</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>27–52</td>
<td>1.32×10^{-2}</td>
<td>0.36</td>
<td>3.9</td>
<td>3.9</td>
</tr>
<tr>
<td>52–87</td>
<td>9.22×10^{-3}</td>
<td>0.40</td>
<td>3.9</td>
<td>3.9</td>
</tr>
<tr>
<td>87–130</td>
<td>3.20×10^{-3}</td>
<td>0.55</td>
<td>8.6</td>
<td>8.7</td>
</tr>
<tr>
<td>130–172</td>
<td>8.46×10^{-4}</td>
<td>0.81</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>172–300</td>
<td>1.18×10^{-4}</td>
<td>1.3</td>
<td>19</td>
<td>19</td>
</tr>
</tbody>
</table>

TABLE VII. Normalized $\bar{t}t$ differential cross section measurements with respect to the H_T variable at a center-of-mass energy of 8 TeV (combination of electron and muon channels). The rightmost three columns show the relative uncertainties on the measured values, in percent. The statistical and systematic uncertainties are listed separately, and are combined in quadrature to give the overall relative uncertainty.

<table>
<thead>
<tr>
<th>H_T (GeV)</th>
<th>$1/\sigma d\sigma/dH_T$ (GeV$^{-1}$)</th>
<th>\pmstat (%)</th>
<th>\pmsyst (%)</th>
<th>Relative uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>120–185</td>
<td>2.10×10^{-3}</td>
<td>0.68</td>
<td>9.1</td>
<td>9.1</td>
</tr>
<tr>
<td>185–215</td>
<td>4.26×10^{-3}</td>
<td>0.65</td>
<td>6.1</td>
<td>6.2</td>
</tr>
<tr>
<td>215–247</td>
<td>4.52×10^{-3}</td>
<td>0.57</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td>247–283</td>
<td>3.99×10^{-3}</td>
<td>0.50</td>
<td>2.9</td>
<td>3.0</td>
</tr>
<tr>
<td>283–323</td>
<td>3.12×10^{-3}</td>
<td>0.46</td>
<td>4.0</td>
<td>4.0</td>
</tr>
<tr>
<td>323–365</td>
<td>2.28×10^{-3}</td>
<td>0.44</td>
<td>4.5</td>
<td>4.6</td>
</tr>
<tr>
<td>365–409</td>
<td>1.60×10^{-3}</td>
<td>0.44</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td>409–458</td>
<td>1.07×10^{-3}</td>
<td>0.43</td>
<td>7.9</td>
<td>7.9</td>
</tr>
<tr>
<td>458–512</td>
<td>6.83×10^{-4}</td>
<td>0.45</td>
<td>8.6</td>
<td>8.6</td>
</tr>
<tr>
<td>512–570</td>
<td>4.26×10^{-4}</td>
<td>0.51</td>
<td>9.0</td>
<td>9.0</td>
</tr>
<tr>
<td>570–629</td>
<td>2.66×10^{-4}</td>
<td>0.65</td>
<td>9.9</td>
<td>9.9</td>
</tr>
<tr>
<td>629–691</td>
<td>1.64×10^{-4}</td>
<td>0.82</td>
<td>9.7</td>
<td>9.7</td>
</tr>
<tr>
<td>691–769</td>
<td>9.93×10^{-5}</td>
<td>0.99</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>769–1000</td>
<td>3.78×10^{-5}</td>
<td>1.1</td>
<td>11</td>
<td>11</td>
</tr>
</tbody>
</table>
TABLE VIII. Normalized \(t\bar{t} \) differential cross section measurements with respect to the \(S_T \) variable at a center-of-mass energy of 8 TeV (combination of electron and muon channels). The rightmost three columns show the relative uncertainties on the measured values, in percent. The statistical and systematic uncertainties are listed separately, and are combined in quadrature to give the overall relative uncertainty.

<table>
<thead>
<tr>
<th>(S_T) (GeV)</th>
<th>(1/\sigma , d\sigma/dS_T) (GeV(^{-1}))</th>
<th>(\pm_{\text{stat}}) (%)</th>
<th>(\pm_{\text{syst}}) (%)</th>
<th>Relative uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>146–277</td>
<td>1.10 x 10(^{-3})</td>
<td>0.84</td>
<td>6.3</td>
<td>6.3</td>
</tr>
<tr>
<td>277–319</td>
<td>3.61 x 10(^{-3})</td>
<td>0.71</td>
<td>5.8</td>
<td>5.9</td>
</tr>
<tr>
<td>319–361</td>
<td>3.82 x 10(^{-3})</td>
<td>0.54</td>
<td>4.1</td>
<td>4.1</td>
</tr>
<tr>
<td>361–408</td>
<td>3.24 x 10(^{-3})</td>
<td>0.46</td>
<td>0.80</td>
<td>0.92</td>
</tr>
<tr>
<td>408–459</td>
<td>2.41 x 10(^{-3})</td>
<td>0.48</td>
<td>2.8</td>
<td>2.9</td>
</tr>
<tr>
<td>459–514</td>
<td>1.66 x 10(^{-3})</td>
<td>0.57</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>514–573</td>
<td>1.07 x 10(^{-3})</td>
<td>0.69</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>573–637</td>
<td>6.65 x 10(^{-4})</td>
<td>0.74</td>
<td>9.6</td>
<td>9.6</td>
</tr>
<tr>
<td>637–705</td>
<td>4.03 x 10(^{-4})</td>
<td>0.71</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>705–774</td>
<td>2.43 x 10(^{-4})</td>
<td>0.73</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>774–854</td>
<td>1.44 x 10(^{-4})</td>
<td>0.88</td>
<td>9.3</td>
<td>9.4</td>
</tr>
<tr>
<td>854–940</td>
<td>8.21 x 10(^{-5})</td>
<td>1.2</td>
<td>8.9</td>
<td>9.0</td>
</tr>
<tr>
<td>940–1200</td>
<td>3.15 x 10(^{-5})</td>
<td>1.5</td>
<td>9.2</td>
<td>9.4</td>
</tr>
</tbody>
</table>

[2] T. Aaltonen et al. (CDF Collaboration), First Measurement of the \(t\bar{t} \) Differential Cross Section \(\sigma \bar{d} \, d\sigma/dM_{jj} \) in \(p\bar{p} \) Collisions at \(\sqrt{s} = 1.96 \) TeV, Phys. Rev. Lett. 102, 222003 (2009).
[3] V. M. Abazov et al. (D0 Collaboration), Measurement of differential \(t\bar{t} \) production cross sections in \(pp \) collisions, Phys. Rev. D 90, 092006 (2014).
[6] CMS Collaboration, Measurement of \(t\bar{t} \) production with additional jet activity, including \(b \) quark jets, in the dilepton channel using \(pp \) collisions at \(\sqrt{s} = 8 \) TeV, Eur. Phys. J. C 76, 379 (2016).
[8] ATLAS Collaboration, Differential \(t\bar{t} \) cross-section measurements as a function of observables constructed from final-state particles using \(pp \) collisions at \(\sqrt{s} = 7 \) TeV in the ATLAS detector, J. High Energy Phys. 06 (2015) 100.

MEASUREMENT OF THE DIFFERENTIAL CROSS…

PHYSICAL REVIEW D 94, 052006 (2016)

T. Rovelli,57a,57b G. P. Siroli,57a,57b N. Tosi,57a,57b R. Travaglini,57a,57b G. Cappello,58a,58b M. Chiorboli,58a,58b S. Costa,58a,58b F. Giordano,58a,58b R. Potenza,58a,58b A. Tricomi,58a,58b C. Tuve,58a,58b G. Barbargi,59a V. Ciuelli,59a,59b C. Civinini,59a R. D’Alessandro,59a,59b E. Focardi,59a,59b S. Gonzi,59a,59b V. Goni,59a,59b P. Lenzi,59a,59b M. Meschini,59a S. Paoletti,59a G. Sguazzoni,59a A. Troiani,59a,59b L. Viliani,59a,59b L. Benussi,60a S. Bianco,60a D. Fabbrini,60a D. Primavera,60a V. Calvello,61a,61b F. Ferro,61a M. Lo Re,61a,61b M. R. Monge,61a,61b E. Robutti,61a S. Tosi,61a,61b L. Bria,61a M. E. Dinardo,62a,62b S. Fiore,62a,62b S. Gennari,62a R. Gerossa,62a,62b A. Ghezzi,62a,62b P. Govoni,62a,62b S. Malvezzi,62a R. A. Manzoni,62a,62b B. Marzocchi,62a,62b D. Menasse,62a L. Moroni,62a M. Paganoni,62a D. Pedrini,62a S. Raggi,62a N. Redaelli,62a T. Tabarelli de Fatis,62a S. Buontempo,63a N. Cavallo,63a S. Di Guida,63a,63b Esposito,63a,63b F. Fabozzi,63a,63c A. O. M. Iorio,63a,63b G. Lanza,63a L. Lista,63a S. Meola,63a,63d,63e M. Merola,63a P. Paolucci,63a,63c C. Sciacca,63a,63c F. Thysse,63a P. Azzi,64a N. Bacchetta,64a L. Benato,64a,64b D. Bisello,64a,64b A. Boletti,64a A. Branca,64a,64b R. Carlini,64a,64b P. Checchia,64a M. Dell’Oss,64a,64b T. Donge,64a U. Dosselli,64a F. Gasparini,64a U. Gasparini,64a,64b A. Gozzellino,64b S. Lacaprara,64b S. Margoni,64b A. T. Meneguzzo,64b J. Pazzini,64a,64b N. Pozzobon,64a P. Ronchese,64a,64b F. Simonetto,64a,64b E. Torassa,64b M. Tosi,64a,64b S. Vanini,64b M. Zanetti,64b P. Zott,64a,64b A. Zucchetta,64b G. Zumerle,64b B. Araceli,65a,65b G. Manfredi,65a,65b M. Menichelli,65a A. Saha,65b A. Santoccchia,66a,66b A. Spiezia,66a,66b,66c K. Androsov,67a,67b H. Kim,67a,67b D. Ciangottini,67a,67b,c L. Fanò,67a,67b,p A. Santocchia,67a,67b,c L. Ferrero,67a,67b,c S. Gennari,67a,67b,c M. M. Obertino,67a,67b,c L. Pacher,67a,67b,c N. Pastrone,67a,67b,c M. Pelliccioni,67a,67b,c S. P. Ratti,67a,67b A. Santocchia,67a,67b,c L. Ferrero,67a,67b,c,67b,c S. Gennari,67a,67b,c M. M. Obertino,67a,67b,c L. Pacher,67a,67b,c N. Pastrone,67a,67b,c M. Pelliccioni,67a,67b,c S. P. Ratti,67a,67b A. Santocchia,67a,67b,c L. Ferrero,67a,67b,c S. Gennari,67a,67b,c M. M. Obertino,67a,67b,c L. Pacher,67a,67b,c N. Pastrone,67a,67b,c M. Pelliccioni,67a,67b,c S. P. Ratti,67a,67b A. Santocchia,67a,67b,c L. Ferrero,67a,67b,c S. Gennari,67a,67b,c M. M. Obertino,67a,67b,c L. Pacher,67a,67b,c N. Pastrone,67a,67b,c M. Pelliccioni,67a,67b,c

(CMS Collaboration)

1 Yerevan Physics Institute, Yerevan, Armenia
2 Institut für Hochenergiephysik der OeAW, Wien, Austria
3 National Centre for Particle and High Energy Physics, Minsk, Belarus
4 Universiteit Antwerpen, Antwerpen, Belgium
5 Vrije Universiteit Brussel, Brussel, Belgium
6 Université Libre de Bruxelles, Bruxelles, Belgium
7 Ghent University, Ghent, Belgium
8 Université Catholique de Louvain, Louvain-la-Neuve, Belgium
9 Université de Mons, Mons, Belgium
10 Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
11 Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
12 Universidade Estadual Paulista, São Paulo, Brazil
13 Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
14 University of Sofia, Sofia, Bulgaria
15 Institute of High Energy Physics, Beijing, China
16 State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
17 Universidad de Los Andes, Bogota, Colombia
18 University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
19 University of Split, Faculty of Science, Split, Croatia
20 Institute Rudjer Boskovic, Zagreb, Croatia
21 University of Cyprus, Nicosia, Cyprus
22 Charles University, Prague, Czech Republic
23 Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
24 National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
25 Department of Physics, University of Helsinki, Helsinki, Finland
26 Helsinki Institute of Physics, Helsinki, Finland
27 Lappeenranta University of Technology, Lappeenranta, Finland
28 IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
29 Laboratoire Leprince-Ringuet, École Polytechnique, IN2P3-CNRS, Palaiseau, France
30 Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
31 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
32 Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
33 Georgian Technical University, Tbilisi, Georgia
34 Tbilisi State University, Tbilisi, Georgia
35 RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
36 RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
37 RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
38 Deutsches Elektronen-Synchrotron, Hamburg, Germany
39 University of Hamburg, Hamburg, Germany
40 Institut für Experimentelle Kernphysik, Karlsruhe, Germany
Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
National and Kapodistrian University of Athens, Athens, Greece
University of Ioannina, Ioannina, Greece
Wigner Research Centre for Physics, Budapest, Hungary
Institute of Nuclear Research ATOMKI, Debrecen, Hungary
University of Debrecen, Debrecen, Hungary
National Institute of Science Education and Research, Bhubaneswar, India
Panjab University, Chandigarh, India
University of Delhi, Delhi, India
Saha Institute of Nuclear Physics, Kolkata, India
Bhabha Atomic Research Centre, Mumbai, India
Tata Institute of Fundamental Research, Mumbai, India
Indian Institute of Science Education and Research (IISER), Pune, India
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
University College Dublin, Dublin, Ireland
INFN Sezione di Bari, Bari, Italy
Università di Bari, Bari, Italy
Politecnico di Bari, Bari, Italy
INFN Sezione di Bologna, Bologna, Italy
Università di Bologna, Bologna, Italy
INFN Sezione di Catania, Catania, Italy
Università di Catania, Catania, Italy
INFN Sezione di Firenze, Firenze, Italy
Università di Firenze, Firenze, Italy
INFN Laboratori Nazionali di Frascati, Frascati, Italy
INFN Sezione di Genova, Genova, Italy
Università di Genova, Genova, Italy
INFN Sezione di Milano-Bicocca, Milano, Italy
Università di Milano-Bicocca, Milano, Italy
INFN Sezione di Napoli, Napoli, Italy
Università di Napoli ‘Federico II’, Napoli, Italy
Università della Basilicata, Potenza, Italy
Università G. Marconi, Roma, Italy
INFN Sezione di Padova, Padova, Italy
Università di Padova, Padova, Italy
INFN Sezione di Trento, Trento, Italy
Università di Trento, Trento, Italy
INFN Sezione di Pavia, Pavia, Italy
Università di Pavia, Pavia, Italy
INFN Sezione di Perugia, Perugia, Italy
Università di Perugia, Perugia, Italy
INFN Sezione di Pisa, Pisa, Italy
Università di Pisa, Pisa, Italy
Scuola Normale Superiore di Pisa, Pisa, Italy
INFN Sezione di Roma, Roma, Italy
Università di Roma, Roma, Italy
INFN Sezione di Torino, Torino, Italy
Università di Torino, Torino, Italy
Università del Piemonte Orientale, Novara, Italy
INFN Sezione di Trieste, Trieste, Italy
Università di Trieste, Trieste, Italy
Kangwon National University, Chunchon, Korea
Kyungpook National University, Daegu, Korea
Chonbuk National University, Jeonju, Korea
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
Korea University, Seoul, Korea
Seoul National University, Seoul, Korea
University of Seoul, Seoul, Korea
Sungkyunkwan University, Suwon, Korea
Vilnius University, Vilnius, Lithuania
National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
Deceased.

Also at Vienna University of Technology, Vienna, Austria.

Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China.

Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.

Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.

Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.

Also at Universidad Estadual de Campinas, Campinas, Brazil.

Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France.

Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.

Also at Joint Institute for Nuclear Research, Dubna, Russia.

Also at Beni-Suef University, Bani Sweif, Egypt.

Also at British University in Egypt, Cairo, Egypt.

Also at Ain Shams University, Cairo, Egypt.

Also at Zewail City of Science and Technology, Zewail, Egypt.

Also at Fayoum University, El-Fayoum, Egypt.

Also at Université de Haute Alsace, Mulhouse, France.

Also at Tbilisi State University, Tbilisi, Georgia.

Also at University of Hamburg, Hamburg, Germany.

Also at Brandenburg University of Technology, Cottbus, Germany.

Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.

Also at Eötvös Loránd University, Budapest, Hungary.

Also at University of Debrecen, Debrecen, Hungary.

Also at Wigner Research Centre for Physics, Budapest, Hungary.

Also at University of Visva-Bharati, Santiniketan, India.

Also at King Abdulaziz University, Jeddah, Saudi Arabia.

Also at University of Ruhuna, Matara, Sri Lanka.

Also at Isfahan University of Technology, Isfahan, Iran.