Magnetoresistance and quantum oscillations of an electrostatically tuned semimetal-to-metal transition in ultrathin WTe2

The MIT Faculty has made this article openly available. *Please share* how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Fatemi, Valla et al. “Magnetoresistance and Quantum Oscillations of an Electrostatically Tuned Semimetal-to-Metal Transition in Ultrathin WTe2.” Physical Review B 95.4 (2017): n. pag. © 2017 American Physical Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevB.95.041410</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Thu Jan 03 00:35:22 EST 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/107827</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Magnetoresistance and quantum oscillations of an electrostatically tuned semimetal-to-metal transition in ultrathin WTe₂

Valla Fatemi, Quinn D. Gibson, Kenji Watanabe, Takashi Taniguchi, Robert J. Cava, and Pablo Jarillo-Herrero

1 Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2 Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
3 Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan

(Received 15 November 2016; revised manuscript received 27 December 2016; published 30 January 2017)

We report on electronic transport measurements of electrostatically gated nanodevices of the semimetal WTe₂. High mobility metallic behavior is achieved in the 2D limit by encapsulating thin flakes in an inert atmosphere. At low temperatures, we find that a large magnetoresistance can be turned on and off by electrostatically doping the system between a semimetallic state and an electron-only metallic state, respectively. We confirm the nature of the two regimes by analyzing the magnetoresistance and Hall effect with a two-carrier model, as well as by analysis of Shubnikov-de Haas oscillations, both of which indicate depletion of hole carriers via the electrostatic gate. This confirms that semiclassical transport of two oppositely charged carriers accurately describes the exceptional magnetoresistance observed in this material. Finally, we also find that the magnetoresistance power law is subquadratic and density independent, suggesting new physics specifically in the semimetallic regime.

DOI: 10.1103/PhysRevB.95.041410

Semimetals, electronic systems with partially populated bands of both positive and negative curvature, have been sources of novel physics since at least 1930, with the discovery of Shubnikov-de Haas (SdH) oscillations in bismuth [1,2]. The semimetal graphite, when thinned down to the electronically two-dimensional (2D) limit, displays remarkable physics that continues to be explored [3,4]. Even more recently, three-dimensional (3D) bulk semimetals have had a resurgence of interest due to recently discovered experimental and theoretical behaviors, including unusually large magnetoresistances [5,6] and new topological electronic states known as Dirac and Weyl semimetals [7,8].

The compound WTe₂ bridges both of these phenomena: Experimentally it showcases exceptionally large, quadratic magnetoresistance in magnetic fields up to 60 T [9], and theoretically it is predicted to be a Weyl semimetal in 3D [10] and near a quantum spin Hall state in 2D [11]. The observed magnetoresistance in bulk samples has been proposed to be the result of near-compensated electron and hole carriers, described by a semiclassical two-carrier model [5,12,13]. However, a number of questions have been raised regarding the mechanisms at play. First, quantum oscillations revealed multiple Fermi pockets as well as imperfect compensation [14–16], suggesting other effects may play a role. Moreover, the small Fermi energy and orbital helicity of the Fermi surface suggest that the band structure and scattering mechanisms, respectively, are liable to change under application of a magnetic field [17–19]. To elucidate the origins of the magnetoresistance, a natural experiment would be to study the effect of changing the carrier density of a thin sample in situ, which recent transport studies have attempted with varying results [20–22]. A major difficulty at the ultrathin limit is that sample quality degrades significantly as the thickness is reduced: Oxidation induces insulating behavior below six layers thick, rendering phenomena related to the high quality bulk crystals inaccessible in the 2D limit [21,23,24].

In this Rapid Communication, we investigate exfoliated WTe₂ devices that are fabricated in a glove box under inert atmosphere in order to minimize degradation [25]. Doing so enables creation of high quality nanodevices that display the intrinsic physics of the material [26]. At low temperatures, we use an electrostatic gate to dope the system from a semimetallic regime to a single-carrier regime. During this crossover we observe an evolution of the magnetoresistance and Hall effect that is qualitatively well captured by a semiclassical two-carrier model. We additionally observe that the exponent of the magnetoresistance power law is subquadratic and gate independent within the semimetallic regime. Finally, the semimetal-to-metal transition is further confirmed by analysis of SdH oscillations, which give insight to the low-energy band structure.

To fabricate the devices, WTe₂ is exfoliated in an argon atmosphere (<1 ppm oxygen) and then encapsulated between layers of hexagonal boron nitride (h-BN) with a polymer pick-up and transfer technique [27]. For the device discussed in the main text, we also include few-layer graphene (FLG) between the WTe₂ and the bottom h-BN layer as an electronic contact. This FLG layer has a natural lateral gap between two independent sheets, which the WTe₂ spans. Finally, we contact the FLG with evaporated Cr-Au via the edge-contact technique [28] and then etch the device into a Hall bar geometry with a reactive ion etch. The FLG serves as an intermediary conductor between the evaporated electrodes and the WTe₂ while also maintaining a good van der Waals seal with the encapsulating h-BN [29]. The device sits on a doped silicon wafer with 285 nm of thermal SiO₂, which serve as the back-gate electrode and dielectric, respectively. All electronic transport measurements are conducted in a four-probe configuration. An optical micrograph and a schematic cross section of the device are shown in Figs. 1(a) and 1(b). Here we report on the behavior of a three-layer thick device (sample A, thickness confirmed by AFM and Raman spectroscopy [21]), and in the Supplemental Material we show data on additional devices [30].

The first indication that inert atmosphere fabrication maintains crystal integrity is the temperature dependence of the
resistance, shown in Fig. 1(c). We observe metallic behavior with a residual resistivity ratio (RRR) of 13. In contrast, nonencapsulated devices fabricated in air display insulating behavior [inset of Fig. 1(c)]. In fact, in the literature a RRR of 13 is only achieved for samples greater than 33 nm thick [21]. Applying a bias V_{BG} to the electrostatic gate, we capacitively modulate the carrier density in the sample, finding that the low-temperature resistivity increases linearly with V_{BG} until ~87 V, beyond which the resistivity drops sharply [see Fig. 1(d)] [31]. The noted metallic temperature dependence with RRR of order 10 is observed for all gate voltages, with two representative gate voltages shown in Fig. 1(c).

We then measure both the longitudinal (R_{xx}) and transverse (R_{xy}) resistances as a function of magnetic field and gate voltage in order to investigate the magnetoresistance behavior at different total carrier densities. Both measurements are shown in Figs. 2(a) and 2(b) for a range of gate voltages, where in Fig. 2(a) we plot the magnetoresistance ratio (MR), defined as $(R_{xx}(B) - R_{xx}(0))/R_{xx}(0)$ [31]. The MR shows a clear transition from strong, superlinear behavior near zero gate voltage ($\sim400\%$ increase at $11.5T$) to suppressed MR ($<3\%$) at the highest gate voltage [inset of Fig. 2(a)]. During the crossover at intermediate gate voltages, we find that R_{xx} saturates at large B, as expected for a noncompensated semimetal [32,33]. Importantly, we observe that this crossover coincides with the Hall effect transitioning from nonlinear to linear magnetic field dependence, indicating a transition from two carrier types to a single carrier type.

To investigate this behavior in more detail, we employ the semiclassical two-carrier model, which gives the following equations for the longitudinal and transverse resistivity of a semimetal:

$$
\rho_{xx} = \frac{1}{e} \left(n_0 \mu_n + p \mu_p + (n \mu_p + p \mu_n)B \right) \frac{B^2}{(n \mu_n + p \mu_p)^2 + (p - n)^2 \mu_n^2 \mu_p^2 B^2}.
$$

$$
\rho_{xy} = \frac{1}{e} \left((n \mu_p - p \mu_n)B + (p - n)\mu_n^2 \mu_p^2 B \right) \frac{B^2}{(n \mu_n + p \mu_p)^2 + (p - n)^2 \mu_n^2 \mu_p^2 B^2}.
$$

which include the electron charge e and four free parameters: the density (n, p) and mobility (μ_n, μ_p) of each carrier type, where n and p refer to electronlike and holelike carriers.
respectively. We fit $R_{xx}(B)$ and $R_{xy}(B)$ simultaneously to extract all four quantities at each gate voltage. (Here we constrain the electron density based on the SdH analysis presented below, but the important qualitative behavior doesn’t require this. See Supplemental Material for details [30].) The fit parameters are plotted as a function of V_{BG} in Figs. 2(c) and 2(d). Most notably, we find that the hole density decreases monotonically to nearly zero at $V_{BG} \sim 100$ V, consistent with our earlier, qualitative interpretation of the data.

We highlight now a particular aspect of the semiclassical model regarding the onset of saturation (or absence thereof). The condition for onset of significant saturation in the MR is given by the ratio of the two terms in the denominator of Eq. (1):

$$\frac{(p - n)^2 \mu_n^2 \mu_p^2 B^2}{(n \mu_n + p \mu_p)^2} \sim 1,$$

which is plotted in the inset to Fig. 2(b) for $B = 10$ T. This condition is satisfied for $V_{BG} > 22$ V, around which gate voltage we see the onset of saturation in the MR. The ratio is greater than 10 for $V_{BG} > 70$ V for which gate voltages we observe near complete saturation at high magnetic field. When seemingly unsaturating MR is observed in a semimetal, Eq. (3) can set a bound for the degree of noncompensation. For example, Ali et al. [5] measure effectively no saturation in bulk WTe$_2$ in fields up to 60 T. From this and the mobility (which sets the magnitude of the MR), one may estimate an upper bound for the relative carrier density difference $|n - p|/n + p \lesssim 0.3\%$, which is an order of magnitude smaller than that estimated from SdH measurements of the bulk Fermi surface [14,18]. This suggests that other factors may be involved in avoiding saturation at the highest fields for 3D samples [20]. A possible avenue would be to investigate the role of mobility anisotropies, known to be important in bismuth [34]. Nonetheless, for the range of magnetic fields studied here, our analysis confirms that the large MR observed in WTe$_2$ is rooted in the nearly compensated electron and hole densities.

Upon closer examination of our data, we find that the MR is actually subquadratic [35]. We can see this clearly by looking at the data in log-log format, as shown in Fig. 2(e). An explicit fit of the power law gives an exponent near 1.6, looking at the data in log-log format, as shown in Fig. 2(e). We fit parameters are plotted as a function of V_{BG} respectively. We fit $R_{xx}(B)$ and $R_{xy}(B)$ simultaneously to extract all four quantities at each gate voltage. (Here we constrain the electron density based on the SdH analysis presented below, but the important qualitative behavior doesn’t require this. See Supplemental Material for details [30].) The fit parameters are plotted as a function of V_{BG} in Figs. 2(c) and 2(d). Most notably, we find that the hole density decreases monotonically to nearly zero at $V_{BG} \sim 100$ V, consistent with our earlier, qualitative interpretation of the data.

The condition for onset of significant saturation in the MR is given by the ratio of the two terms in the denominator of Eq. (1):

$$\frac{(p - n)^2 \mu_n^2 \mu_p^2 B^2}{(n \mu_n + p \mu_p)^2} \sim 1,$$

which is plotted in the inset to Fig. 2(b) for $B = 10$ T. This condition is satisfied for $V_{BG} > 22$ V, around which gate voltage we see the onset of saturation in the MR. The ratio is greater than 10 for $V_{BG} > 70$ V for which gate voltages we observe near complete saturation at high magnetic field. When seemingly unsaturating MR is observed in a semimetal, Eq. (3) can set a bound for the degree of noncompensation. For example, Ali et al. [5] measure effectively no saturation in bulk WTe$_2$ in fields up to 60 T. From this and the mobility (which sets the magnitude of the MR), one may estimate an upper bound for the relative carrier density difference $|n - p|/(n + p) \lesssim 0.3\%$, which is an order of magnitude smaller than that estimated from SdH measurements of the bulk Fermi surface [14,18]. This suggests that other factors may be involved in avoiding saturation at the highest fields for 3D samples [20]. A possible avenue would be to investigate the role of mobility anisotropies, known to be important in bismuth [34]. Nonetheless, for the range of magnetic fields studied here, our analysis confirms that the large MR observed in WTe$_2$ is rooted in the nearly compensated electron and hole densities.

Upon closer examination of our data, we find that the MR is actually subquadratic [35]. We can see this clearly by looking at the data in log-log format, as shown in Fig. 2(e). An explicit fit of the power law gives an exponent near 1.6, looking at the data in log-log format, as shown in Fig. 2(e). We fit parameters are plotted as a function of V_{BG} respectively. We fit $R_{xx}(B)$ and $R_{xy}(B)$ simultaneously to extract all four quantities at each gate voltage. (Here we constrain the electron density based on the SdH analysis presented below, but the important qualitative behavior doesn’t require this. See Supplemental Material for details [30].) The fit parameters are plotted as a function of V_{BG} in Figs. 2(c) and 2(d). Most notably, we find that the hole density decreases monotonically to nearly zero at $V_{BG} \sim 100$ V, consistent with our earlier, qualitative interpretation of the data.

The origin of the correction to the exponent is as yet unclear. Many studies on bulk WTe$_2$ have noted a large, quadratic MR [5,14,16,18,21,22,36], but some that explicitly fit the power law also find subquadratic exponents [20,37]. While we observe a similar deviation, our sample is in the 2D limit, whereas the Fermi surface of bulk WTe$_2$ is 3D in character [14,18], suggesting that dimensionality is not a driving factor. Additionally, we find that the power law is density independent in the semimetallic regime, and almost no MR is observed in the electron-only regime. This suggests that the coexistence of electrons and holes is crucial. One might look to semimetallic Boltzmann transport models which predict that boundary effects can generate linear MR when the valley recombination length is comparable to the transport channel width [12,13], but this requires classically strong magnetic fields not present here ($\mu_n p B \lesssim 3$ for this work). Interspecies drag effects may also play a role in magnetoresistance [38], but finite intervalley scattering should suppress such physics. The question of the unusual magnetoresistance poses an experimental and theoretical challenge for future investigation.
We now turn to analysis of the quantum oscillations. In Fig. 3(a) we show representative measurements of $\Delta R_{xy}(1/B)$, the resistivity after subtracting a smooth quadratic background above $2 \, \text{T}$, in the electron-only regime $(V_{BG} = 120 \, \text{V})$. At this gate voltage, two oscillations are clearly visible, confirmed by the two peaks visible in the Fourier transform of the data in Fig. 3(b), which we label α and β. In Fig. 3(c) we show a map of ΔR_{xy} with respect to both B and V_{BG}. A third, holelike dispersing oscillation is additionally visible for lower gate voltages (highlighted by dotted white lines), which we label δ. This is made clearer by fast Fourier transform (FFT) analysis, as shown in Fig. 3(d) where the three observed peak frequencies are tracked as a function of gate voltage [30].

The α and β frequencies disperse weakly with gate voltage in a very similar manner as the electron carrier density from the semiclassical analysis. The nonmonotonic gate dependence of the electron bands is likely the result of strong electric field effects, which can be explored in future devices employing a dual-gate geometry [11,39]. The third oscillation frequency, δ, decreases monotonically with increasing gate voltage, which we can extrapolate to zero frequency (full depletion) at roughly $V_{BG} = 90 \, \text{V}$. This depletion voltage agrees with what is found for the positive charge carriers in the semiclassical analysis, so we ascribe the δ pocket to a valence band. Curiously, this depletion also coincides with a peak in the amplitude of the SdH oscillations of the α and β pockets [see Fig. 3(c)], suggesting that scattering between the electron and hole valleys is important.

We also conduct temperature dependence of the SdH oscillations. Fitting the Lifshitz-Kosevich formula to the temperature dependence of resistance oscillation maxima allows for extraction of the effective mass. In multiband systems care must be taken to extract the oscillation amplitude of an individual frequency, which can be done by an appropriate FFT analysis (see Supplemental Material for more details [30]). An example fit for the α pocket oscillation is shown in Fig. 3(e), giving $m_\alpha/m_e = 0.25 \pm 0.02$, where m_e is the bare electron mass. Similar analysis for the other bands give $m_\beta/m_e = 0.30 \pm 0.02$ and $m_\delta/m_e = 0.36 \pm 0.04$ [see Fig. 3(d)] [30,40]. These values are somewhat smaller than those reported for bulk crystals, which range from 0.3 to 1 m_e [14,36]. The electron effective masses are in good agreement with theory for the monolayer, while the hole mass is again smaller than that prediction by about a factor of two [41]. We note that explicit predictions for few-layer WTe$_2$ have not yet been made.

In summary, we investigated electronic transport in encapsulated, ultrathin WTe$_2$. We find that a strong, intrinsic MR can be turned off by electrostatically doping the sample from a semimetallic state to an electron-only regime. We confirm the basis of the two regimes by simultaneously analyzing the MR and the Hall effect with a two-carrier model as well as by analysis of Shubnikov-de Haas oscillations, both of which indicate depletion of holelike carriers in the suppressed-MR regime. These observations confirm that the MR in WTe$_2$ is qualitatively explained by semiclassical transport of a semimetal, with potentially new physics in a modified exponent to the MR power law.

This work was partly supported by the DOE, Basic Energy Sciences Office, Division of Materials Sciences and Engineering, under award DE-SC0006418 (sample fabrication and measurements) and partly through AFOSR Grant No. FA9550-16-1-0382 (data analysis), as well as by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant No. GBMF4541 to P.J.H.; Device nanofabrication was partly supported by the Center for Excitons, an Energy Frontier Research Center funded by the DOE, Basic Energy Sciences Office, under Award No. DE-SC0001088. Crystal growth at Princeton University was supported by the NSF MRSEC program Grant No. DMR-1005438. This work made use of the Materials Research Science and Engineering Center Shared Experimental Facilities supported by NSF under Award No. DMR-0819762. Sample fabrication was performed partly at the Harvard Center for Nanoscale Science supported by the NSF under Grant No. ECS-0335765. We thank E. Navarro-Moratalla, J. D. Sanchez-Yamagishi, and L. Brethauer for discussions and Sanfeng Wu for help with crystal exfoliation.
