Early Advanced LIGO binary neutron-star sky localization and parameter estimation

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Early Advanced LIGO binary neutron-star sky localization and parameter estimation

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2016 J. Phys.: Conf. Ser. 716 012031
(http://iopscience.iop.org/1742-6596/716/1/012031)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 18.51.1.63
This content was downloaded on 25/04/2017 at 14:05

Please note that terms and conditions apply.

You may also be interested in:

Collective excitations in neutron-star crusts
N Chamel, D Page and S Reddy

Modeling of neutron-star mergers: a review while awaiting gravitational-wave detection
Luca Baiotti

On the robustness of the r-process in neutron-star mergers against variations of nuclear masses
J J Mendoza-Temis, M R Wu, G Martinez-Pinedo et al.

Maximum pulsar mass, equation of state and structure of neutron-star cores
P Haensel and J L Zdunik

Symmetry energy from nuclear masses and neutron-star observations using generalised Skyrme functionals
N Chamel, A F Fantina, J M Pearson et al.

Proceedings of the 2008 Numerical Relativity Data Analysis Meeting, Syracuse University, Syracuse, NY, USA, 11–14 August 2008
Patrick Sutton and Deirdre Shoemaker

Rotation and Accretion Powered Pulsars
V M Kaspi

Equation of State Constraints
W. Kluniak

The superfluid phase transition in pulsars
R J Green and A Love
Early Advanced LIGO binary neutron-star sky localization and parameter estimation

C P L Berry¹, B Farr², W M Farr¹, C-J Haster¹, I Mandel¹, H Middleton¹, L P Singer³, A L Urban⁴, A Vecchio¹, S Vitale⁵, K Cannon⁶, P B Graff⁷,⁸, C Hanna⁹,¹⁰, S Mohapatra⁵,¹¹, C Pankow⁴, L R Price¹², T Sidery¹ and J Veitch¹

¹ School of Physics & Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
² Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA
³ Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
⁴ Leonard E. Parker Center for Gravitation, Cosmology, and Astrophysics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201, USA
⁵ Massachusetts Institute of Technology, 185 Albany St, Cambridge, MA 02139, USA
⁶ Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, Ontario, M5S 3H8, Canada
⁷ Department of Physics, University of Maryland–College Park, College Park, MD 20742, USA
⁸ Gravitational Astrophysics Lab, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
⁹ Perimeter Institute for Theoretical Physics, Ontario, N2L 2Y5, Canada
¹⁰ Pennsylvania State University, University Park, PA 16802, USA
¹¹ Syracuse University, Syracuse, NY 13244, USA
¹² LIGO Laboratory, California Institute of Technology, Pasadena, CA 91125, USA

E-mail: cplb@star.sr.bham.ac.uk

Abstract. 2015 will see the first observations of Advanced LIGO and the start of the gravitational-wave (GW) advanced-detector era. One of the most promising sources for ground-based GW detectors are binary neutron-star (BNS) coalescences. In order to use any detections for astrophysics, we must understand the capabilities of our parameter-estimation analysis. By simulating the GWs from an astrophysically motivated population of BNSs, we examine the accuracy of parameter inferences in the early advanced-detector era. We find that sky location, which is important for electromagnetic follow-up, can be determined rapidly (∼5 s), but that sky areas may be hundreds of square degrees. The degeneracy between component mass and spin means there is significant uncertainty for measurements of the individual masses and spins, however, the chirp mass is well measured (typically better than 0.1%).

1. Introduction

The advanced generation of ground-based gravitational-wave (GW) detectors, Advanced LIGO (aLIGO)¹ and Advanced Virgo (AdV)², begin operation soon: the first observing run (O1) of aLIGO is September 2015–January 2016³. Binary neutron stars (BNSs) are a promising source⁴.⁷

¹ Since submission, the first detection (of a binary black hole rather than a BNS), has been announced⁵.
Analysis of a signal goes through several stages: detection, low-latency parameter estimation (PE), mid-latency PE and high-latency PE \[\underline{3}\]. Each refines our understanding. To discover what we can learn about BNSs, a simulated astrophysically motivated population of BNS signals (component masses \(m_{1,2} \in [1.2, 1.6]M_\odot\), isotropic spins with magnitudes \(a_{1,2} \in [0, 0.05]\), and uniformly distributed in volume \[\underline{7}\]) has been studied in an end-to-end analysis, with results reported in several publications. Singer \textit{et al.} \[\underline{7}\] studied the (low- and mid-latency) prospects for sky localization \[\underline{4}\], Berry \textit{et al.} \[\underline{8}\] repeated the analysis using more realistic noise (detector noise from the sixth science run of initial LIGO \[\underline{9}\] recoloured to match the expected sensitivity of early aLIGO \[\underline{10}\], in contrast to ideal Gaussian noise. In addition to considering sky localization, Berry \textit{et al.} \[\underline{8}\] also investigated measurements of source distance and mass. The latter is influenced by spin, Farr \textit{et al.} \[\underline{11}\] completed the high-latency analysis including the effects of spin, considering all aspects of PE. We report results from these studies for O1 PE; further technical details are in the papers themselves.

2. Sky localization

Sky localization can be computed at low-latency by \textsc{bayestar} \[\underline{12}\] or at mid- to high-latency by \textsc{LALInference} \[\underline{13}\]. Both are fully Bayesian PE codes; \textsc{bayestar} uses the output of the detection pipeline, while \textsc{LALInference} matches GW templates to the measured detector strain \[\underline{14}\]. Computing templates is computationally expensive; mid-latency PE is done with (non-spinning) TaylorF2 and high-latency PE is done with (fully spin-precessing) SpinTaylorT4. Both are inspiral-only post-Newtonian waveforms \[\underline{15}\]. \textsc{bayestar} takes a median time of 4.5 s to calculate the location \[\underline{12}\]; the median times for the non-spinning and spinning \textsc{LALInference} analyses to collect 2000 posterior samples are \(\sim 5.7 \times 10^4\) s \[\underline{8}\] and \(\sim 9.2 \times 10^5\) s \[\underline{11}\] respectively.

Despite their differences, \textsc{bayestar} and \textsc{LALInference} produce consistent results for a two-detector network \[\underline{4}\]. The inclusion of spin in PE does not change sky localization for this slowly spinning population (the same may not be true for rapidly spinning black holes). At a constant signal-to-noise ratio (SNR) \(\varrho\), there is also a negligible difference between results from Gaussian and recoloured noise. The scaling of the 50\% credible region CR\(_{0.5}\) and 90\% credible region CR\(_{0.9}\) with SNR is shown in Fig. \[\underline{1}\]. Assuming a detection threshold of a false alarm rate of \(10^{-2}\) yr\(^{-1}\) (\(\varrho \gtrsim 10–12\)), the median CR\(_{0.5}\) (CR\(_{0.9}\)) is \(170 \text{deg}^2\) (690 \text{deg}^2) using \textsc{bayestar} and \(150 \text{deg}^2\) (630 \text{deg}^2) using \textsc{LALInference}; switching to a threshold of \(\varrho \geq 12\) \[\underline{3}\], these become \(140 \text{deg}^2\) (520 \text{deg}^2) and \(120 \text{deg}^2\) (480 \text{deg}^2) respectively \[\underline{8}\].

3. Mass and spin

The first estimates for the component masses \(m_{1,2}\) come from the detection pipeline, here \textsc{GSTLAL} \[\underline{16}\]. Full posteriors are constructed by \textsc{LALInference}. The degeneracy between mass and spin complicates measurements. Excluding spins (as in the mid-latency analysis) means we can miss the true parameter values. Allowing spins to vary over the full (black hole) range of \(a_{1,2} \in [0, 1]\) (as in the high-latency analysis) and including precession ensures we cover the true value, but potentially means that we consider spin values not found in nature: here, the spins are \(a_{1,2} < 0.05\), but we will not know the true distribution in practice.

The chirp mass \(\mathcal{M} = (m_1 m_2)^{3/5}/(m_1 + m_2)^{1/5}\) is the best measured mass parameter. Fig. \[\underline{2(a)}\] shows the offset between chirp-mass estimates (maximum likelihood values for \textsc{GSTLAL} and posterior means for \textsc{LALInference}) and the true values. All methods produce accurate results (offsets < 0.5\%) and there is no noticeable difference between recoloured and Gaussian noise. The mid-latency offsets are smaller than the high-latency ones, because our BNSs are slowly spinning \(\varrho \ll 1\,\text{yr}^{-1}\), and 120 deg\(^2\) (480 deg\(^2\)) respectively \[\underline{8}\].

\[\underline{2}\] Singer \textit{et al.} \[\underline{7}\] also considered the second observing run (O2), with AdV joining the network.

\[\underline{3}\] Part of the LIGO Algorithm Library (LAL) available from \url{www.lsc-group.phys.uwm.edu/lal}.

\[\underline{4}\] This is the case in a three-detector network if there is not a trigger from all the detectors \[\underline{7}\] \[\underline{12}\].
Figure 1. Sky localization versus SNR for the low-latency
Bayestar, the mid-latency (non-spinning) LALInference and the high-latency (spinning) LALInference analyses [7, 8, 11]. Individual results are indicated by points and lines indicate best fits assuming $\text{CR} \propto \varrho^{-2}$; these are $\text{CR}_{0.5} \approx (2.84 \times 10^4) \varrho^{-2} \text{deg}^2$ and $\text{CR}_{0.9} \approx (1.14 \times 10^5) \varrho^{-2} \text{deg}^2$ across the range considered.

Figure 2. Cumulative fractions of events with (a) offsets in chirp-mass estimates and (b) posterior standard deviations smaller than the abscissa value ϱ. The offset is the difference between the true value M_s and maximum likelihood value from GSTLAL or the posterior mean from (mid- or high-latency) LALInference. The shaded areas are the 68% confidence intervals on the cumulative distributions.

spinning (which need not be the case in reality). However, the mid-latency offsets are more statistically significant. The mean values of $(\hat{M} - M)^2/\sigma_{M}^2$, where σ_{M} is the posterior standard deviation, are 5.5, 5.1 and 0.7 for the recoloured non-spinning, Gaussian non-spinning and Gaussian spinning analyses respectively. Ignoring spin yields posteriors that are too narrow [8], the distribution of σ_{M} is shown in Fig. 2(b) [11]; the median values of σ_{M} are $2.0 \times 10^{-4} M_\odot$, $2.1 \times 10^{-4} M_\odot$ and $7.7 \times 10^{-4} M_\odot$ for the recoloured non-spinning, Gaussian non-spinning and Gaussian spinning analyses respectively.

Measurements of other mass parameters, such as the mass ratio $q = m_2/m_1$ ($0 < q \leq 1$) or
\(m_{1,2}\), are less precise, and the degeneracy with spin is more pronounced [11][13]: the median 50% (90%) credible interval for \(q\) is 0.29 (0.59). For our population of low-spin BNSs, the spins are not well measured and have large uncertainties. None of the events have a 50% upper credible bound less than 0.1; the median 50% (90%) upper credible bound is 0.30 (0.70) for \(a_1\) (the dominant spin) and 0.42 (0.86) for \(a_2\). Low spin values are preferred, but spin magnitudes can only be weakly constrained.

4. Summary
O1 marks the beginning of the advanced-detector era. As time progresses, sensitivities improve and further detectors (AdV, LIGO-India [17] and KAGRA [18]) come online, the prospects for detection and PE will become better [7] [19] [20]. For BNSs, chirp mass is always well measured, but sky localization and spins are more uncertain.

Acknowledgments
This work was supported in part by STFC. This is LIGO document reference LIGO-P1500155. A catalogue of results is available at www.ligo.org/scientists/first2years/.

References
[19] Schutz B F 2011 Class. Quantum Grav. 28 125023 (Preprint 1102.5421)