Neural correlate of the construction of sentence meaning

Evelina Fedorenko,a,b,1 Terri L. Scott, Peter Brunner,c,d,e, William G. Coon,f,g,h,i, Brianna Pritchett, Gerwin Schalk,d,e,f, and Nancy Kanwisher,a,b

*aDepartment of Psychiatry, Harvard Medical School, Boston, MA 02115; bDepartment of Psychiatry, Massachusetts General Hospital, Boston, MA 02114; cDepartment of Speech, Language, and Hearing Sciences, Boston University, Boston, MA 02215; dNational Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY 12208; eDepartment of Neurology, Albany Medical College, Albany, NY 12208; fDepartment of Biomedical Sciences, State University of New York at Albany, Albany, NY 12222; and gBrain & Cognitive Sciences Department, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139

Contributed by Nancy Kanwisher, August 4, 2016 (sent for review February 17, 2016; reviewed by Daphne Bavelier and Ziv M. Williams)

The neural processes that underlie your ability to read and understand this sentence are unknown. Sentence comprehension occurs very rapidly, and can only be understood at a mechanistic level by discovering the precise sequence of underlying computational and neural events. However, we have no continuous and online neural measure of sentence processing with high spatial and temporal resolution. Here we report just such a measure: intracranial recordings from the surface of the human brain show that neural activity, indexed by γ-power, increases monotonically over the course of a sentence as people read it. This steady increase in activity is absent when people read and remember nonword-lists, despite the higher cognitive demand entailed, ruling out accounts in terms of generic attention, working memory, and cognitive load. Response increases are lower for sentence structure without meaning (“Jabberwocky” sentences) and word meaning without sentence structure (word-lists), showing that this effect is not explained by responses to syntax or word meaning alone. Instead, the full effect is found only for sentences, implicating compositional processes of sentence understanding, a striking and unique feature of human language not shared with animal communication systems. This work opens up new avenues for investigating the sequence of neural events that underlie the construction of linguistic meaning.

How does a sequence of sounds emerging from one person’s mouth create a complex meaning in another person’s mind? Although we have long known where language is processed in the brain (1–3), we still know almost nothing about how neural circuits extract and represent the meaning of a sentence. A powerful method for addressing this question is intracranial recording of neural activity directly from the cortical surface in neurosurgery patients (i.e., electrocorticography or ECoG) (4, 5). Although opportunities for ECoG data collection are rare, determined by clinical—not scientific—priorities, they nonetheless offer an unparalleled combination of spatial and temporal resolution, and further provide direct measures of actual neural activity, rather than indirect measures via blood flow (as in PET, fMRI, and near infrared spectroscopy/optical imaging). ECoG data are particularly valuable for the study of uniquely human functions like language, where animal models are inadequate. Here we used ECoG to identify the neural events that occur online as the meaning of a sentence is extracted and represented.

Prior intracranial recording studies of language have largely focused on speech perception and production (e.g., refs. 6–11) and word-level processes (e.g., refs. 12–26). However, the most distinctive feature of human language is its compositionality: the ability to create and understand complex meanings from novel combinations of words structured into phrases and sentences (27). As a first step toward understanding the neural basis of sentence comprehension, we recorded intracranial responses while participants read sentences and three kinds of control stimuli. In each trial, a string of eight items (words or nonwords) were presented sequentially, enabling us to separately measure the neural response to each item individually; to encourage attention to all stimuli (whether meaningful or not), participants decided at the end of each trial whether a probe word/nonword appeared in the preceding string.

Our four stimulus conditions (materials adapted from ref. 28; examples are shown in the “Sample materials” table below) enabled us to orthogonally vary the presence of word meaning and sentence structure. Word-lists (W) included the same words as the sentences (S) (scrambled across sentences), but lacked sentence structure. “Jabberwocky” (J) sentences were grammatical but largely meaningless, as they contained no real content words. Nonword-lists (N) contained neither sentence-level structure nor word meaning.

Sample materials

<table>
<thead>
<tr>
<th>Condition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sentences</td>
<td>STEVE WAS LATE TO SCHOOL BECAUSE HE OVERSLEPT [probe: SCHOOL]</td>
</tr>
<tr>
<td></td>
<td>THE RED BALLOON ROSE UP INTO THE CLOUDS [probe: WENT]</td>
</tr>
<tr>
<td>Word-lists</td>
<td>RAIN THE WORK BEHIND REACHED GREW KIDS OPENED [probe: GREW]</td>
</tr>
<tr>
<td></td>
<td>STOOD THE TIED CANDLE INTO SHED THE QUICKLY [probe: WALLET]</td>
</tr>
<tr>
<td>Jabberwocky</td>
<td>THE GAR WAS SWARBING THE MUME FROM ATAR [probe: ATAR]</td>
</tr>
<tr>
<td></td>
<td>TOMAL HOTHED THE BLESPY NULO DURING THE VAYLANT [probe: FLORKY]</td>
</tr>
<tr>
<td>Nonword-lists</td>
<td>PHREZ CRE EKED PICUSE EMTO PECH CRE ZEIGELY [probe: PHREZ]</td>
</tr>
<tr>
<td></td>
<td>PIV WUBA WOS PAFFING DEBON TRIENED LE KIF [probe: LOME]</td>
</tr>
</tbody>
</table>

Significance

How do circuits of neurons in your brain extract and hold the meaning of a sentence? To start to address this unanswered question, we measured neural activity from the surface of the human brain in patients being mapped out before neurosurgery, as they read sentences. In many electrodes, neural activity increased steadily over the course of the sentence, but the same was not found when participants read lists of words or pronounceable nonwords, or grammatical nonword strings (“Jabberwocky”). This build-up of neural activity appears to reflect neither word meaning nor syntax alone, but the representation of complex meanings.

Author contributions: E.F., G.S., and N.K. designed research; E.F., T.L.S., P.B., W.G.C., and G.S. performed research; E.F., T.L.S., P.B., B.P., G.S., and N.K. analyzed data; and E.F., T.L.S., G.S., and N.K. wrote the paper.

Reviews: D.B., University of Geneva; and Z.M.W., Harvard Medical School. The authors declare no conflict of interest.

1To whom correspondence may be addressed. Email: Evelina.fedorenko@mhg.harvard.edu or ngk@mit.edu.

This article contains supporting information online at www.pnas.orglookup/suppl/doi:10.1073/pnas.1612132113/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1612132113

E6256-E6262 | PNAS | Published online September 26, 2016

[Image]
Few prior studies have recorded intracranial responses during sentence comprehension. Noninvasive methods with high temporal resolution [event-related brain potential (ERPs) and magnetoencephalography] have revealed neural responses to specific types of events during sentence comprehension, such as syntactic or semantic violations (e.g., refs. 29–36), but do not provide a measure of ongoing neural activity from focal cortical regions. Numerous prior studies with fMRI have identified cortical regions that respond strongly (e.g., refs. 28, 37–41) and selectively (42–44) during sentence comprehension (whether presented visually or auditorily) (28, 45), but fMRI lacks the temporal resolution to reveal the responses to individual words as a sentence is presented. Hence, little is known about how neural activity in specific cortical regions unfolds over the course of a sentence as the meaning of that sentence is extracted and represented.

Given the necessarily exploratory nature of this study, we took stringent measures to guard against the dangers of statistical nonindependence and hidden degrees-of-freedom (46): all hypotheses, data analysis choices, and selection of specific electrodes were made based on analyses of only half the data (odd-numbered runs), before the other half of the data (even-numbered runs) were ever inspected.

Six epilepsy patients with subdurally implanted electrodes placed over left-hemisphere frontal, temporal, and parietal cortices were tested. We measured the time-course at each electrode of broadband γ-activity of the ECoG signal, which is closely related to spiking activity of neuronal populations directly underneath each recording electrode (47–50).

Results

We first asked whether any electrodes produced a higher γ-response overall during the reading of sentences than nonword strings, as has been reported in numerous previous studies with fMRI (e.g., refs. 28, 51, 52). As expected, numerous electrodes in each subject, distributed across temporal and frontal regions, showed a significant effect of sentences compared to nonword-lists in odd-numbered runs (blue, circled in white). (B) The γ-magnitude for sentences and nonword-lists averaged across word positions estimated in even-numbered runs (i.e., data independent from the data used to select the EOIs). (C) The γ-magnitude for sentences and nonword-lists in each of eight word positions in even-numbered runs (see SI Appendix, Part F for additional figures showing data not averaged within each word position). Error bars indicate SEMs over EOIs in both B and C.

Table 1. Numbers of total, analyzed, and language-responsive electrodes, as well as EOIs

<table>
<thead>
<tr>
<th>Subject no.</th>
<th>Total electrodes</th>
<th>Analyzed electrodes</th>
<th>S > N Electrodes</th>
<th>Increasing (i.e., EOIs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>120</td>
<td>117</td>
<td>45 (0.38*)</td>
<td>27 (0.23³, 0.60⁴)</td>
</tr>
<tr>
<td>S3</td>
<td>112</td>
<td>84</td>
<td>11 (0.13)</td>
<td>9 (0.11, 0.82)</td>
</tr>
<tr>
<td>S4</td>
<td>134</td>
<td>124</td>
<td>15 (0.12)</td>
<td>9 (0.07, 0.60)</td>
</tr>
<tr>
<td>S5</td>
<td>98</td>
<td>87</td>
<td>15 (0.17)</td>
<td>6 (0.06, 0.33)</td>
</tr>
<tr>
<td>*Proportion of S > N electrodes relative to analyzed electrodes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>†Proportion of S > N and S increasing electrodes relative to analyzed electrodes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>‡Proportion of S > N and S increasing electrodes relative to S > N electrodes.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
to reflect a previously unreported marker of the neural construction of sentence meaning.

To rigorously test the significance of this finding, for each subject we selected electrodes of interest (EOIs) (Fig. 1A and Table 1) that showed (in odd-run data): (i) a significantly greater mean response to sentences than nonword-lists averaging across the eight word positions, and (ii) a monotonic increase over the eight positions in the sentence condition (Materials and Methods). Fifty-one such EOIs were identified across four subjects, distributed across the frontal and temporal cortex. These four subjects were used in all of the analyses reported in the text (Figs. 1–4, except Fig. 2 G and H). The remaining two subjects—with only two EOIs each—were excluded from the main analyses, but their results were qualitatively and quantitatively similar (SI Appendix, Part D). Response magnitudes of each EOI in each subject were then quantified from even-run data for each condition.

Indeed, the even-run data replicated the higher response to sentences than nonword-lists (P < 0.005) (Fig. 1B and Table 2). Critically, each subject also replicated the monotonic increase in γ-power for sentences (correlation between word position and response, P < 0.05), but not nonword-lists (Fig. 1C and SI Appendix, Part A; see also SI Appendix, Part B for similar results when using even-numbered runs for EOI selection). Reliable differences between the two conditions emerged between the second and fourth word position within the sequence (SI Appendix, Part A), suggesting that the ability to combine two or three words into a coherent representation was necessary for the sentence time-course to diverge significantly from that of the control, nonword-lists condition.

Sentences differ from nonword-lists in the presence of both word meaning and syntax. Is the observed response increase primarily driven by one of these factors? To find out, we measured responses to the two remaining conditions: word-lists (lexical meaning with little syntax) and Jabberwocky sentences (syntax with little meaning) (Sample Materials). Averaging across word positions, responses are highest for sentences, weaker for word-lists and Jabberwocky, and weakest for nonword-lists (Fig. 2A and Table 2), a pattern similar to the one observed previously in fMRI (28, 51). It is worth noting that unlike in fMRI, where the responses to word-lists and Jabberwocky are similar in magnitude (28), the ECoG response to word-lists is generally higher than the response to Jabberwocky (Fig. 2A), and significantly so in many EOIs. In fact, across EOIs, each of the four subjects shows a significantly higher response to word-lists than Jabberwocky (P < 0.05) (Table 2). No EOI shows a

Table 2. Results from two-tailed paired samples t tests on the differences in PSC (with respect to baseline fixation) between pairs of experimental conditions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>12.11 ± 1.78</td>
<td>6.19 ± 0.58</td>
<td>11.42 ± 1.02</td>
<td>5.92 ± 1.92</td>
<td>0.69 ± 1.21</td>
<td>5.23 ± 0.92</td>
</tr>
<tr>
<td>(t26) = 6.80</td>
<td>(t26) = 10.67</td>
<td>(t26) = 11.21</td>
<td>(t26) = 3.08</td>
<td>(t26) = 0.57</td>
<td>(t26) = 5.65</td>
<td></td>
</tr>
<tr>
<td>S3</td>
<td>6.76 ± 1.02</td>
<td>3.72 ± 0.89</td>
<td>5.42 ± 0.81</td>
<td>3.04 ± 0.65</td>
<td>1.33 ± 0.55</td>
<td>1.71 ± 0.23</td>
</tr>
<tr>
<td>t(8) = 6.58</td>
<td>t(8) = 4.18</td>
<td>t(8) = 6.71</td>
<td>t(8) = 4.67</td>
<td>t(3) = 2.43</td>
<td>t(8) = 7.38</td>
<td></td>
</tr>
<tr>
<td>P < 10−6</td>
<td>P < 10−6</td>
<td>P < 10−6</td>
<td>P < 10−6</td>
<td>P < 0.04</td>
<td>P < 10−4</td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>9.21 ± 1.38</td>
<td>3.17 ± 0.83</td>
<td>7.59 ± 1.11</td>
<td>6.04 ± 1.47</td>
<td>1.62 ± 0.59</td>
<td>4.42 ± 1.03</td>
</tr>
<tr>
<td>t(8) = 6.66</td>
<td>t(8) = 3.80</td>
<td>t(8) = 6.83</td>
<td>t(8) = 4.12</td>
<td>t(8) = 2.75</td>
<td>t(8) = 4.31</td>
<td></td>
</tr>
<tr>
<td>P < 10−3</td>
<td>P < 10−3</td>
<td>P < 10−3</td>
<td>P < 10−2</td>
<td>P > 0.03</td>
<td>P < 10−2</td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td>7.58 ± 3.51</td>
<td>0.51 ± 1.31</td>
<td>5.24 ± 2.29</td>
<td>7.08 ± 2.73</td>
<td>2.34 ± 1.30</td>
<td>4.73 ± 1.60</td>
</tr>
<tr>
<td>t(5) = 2.16</td>
<td>t(5) = 0.39</td>
<td>t(5) = 2.29</td>
<td>t(5) = 2.59</td>
<td>t(5) = 1.80</td>
<td>t(5) = 2.96</td>
<td></td>
</tr>
<tr>
<td>P = 0.08</td>
<td>P = 0.72</td>
<td>P = 0.07</td>
<td>P = 0.05</td>
<td>P = 0.13</td>
<td>P = 0.03</td>
<td></td>
</tr>
<tr>
<td>Across subjects</td>
<td>8.92 ± 1.18</td>
<td>3.40 ± 1.16</td>
<td>7.42 ± 1.44</td>
<td>5.52 ± 0.87</td>
<td>1.50 ± 0.34</td>
<td>4.02 ± 0.79</td>
</tr>
<tr>
<td>P < 10−3</td>
<td>P = 0.01</td>
<td>P = 0.01</td>
<td>P < 10−2</td>
<td>P < 0.02</td>
<td>P = 0.01</td>
<td></td>
</tr>
</tbody>
</table>

Data are taken from even-numbered runs only and averaged across all word positions and EOIs. The first row of each cell denotes the average PSC difference with SEMs across EOIs. Significance levels are shaded with white: P < 0.01, midgray: 0.01 ≤ P < 0.05, and dark-gray: P ≥ 0.05.
Discussion

Our most striking finding is that many language-responsive electrodes show a monotonic increase in γ-power over the course of the sentence as it is read or heard, and that this increase cannot be explained by the presence of either word meaning or sentence structure alone. What mental processes might underlie this increase in γ response? We can rule out several potential explanations linked to general cognitive factors. First, the build-up effect cannot be explained by general attention or arousal that is higher in the sentence condition than in the other three conditions. Performance on the memory-probe task provides a useful proxy for attention/arousal, and participants generally performed well on the memory-probe task across conditions (SI Appendix, Part C). Although accuracies were numerically higher in the sentence and word-list conditions than in the Jabberwocky and nonword-list conditions, performance was quite good even in the least-accurate (nonword-list) condition (>70%, not including subject 5 (S5), who misunderstood the instructions) (SI Appendix, Part C). These data accord with the subjective impression of performing this task: the nonword-list condition is the hardest, the Jabberwocky and word-list conditions intermediate, and the sentence condition the easiest; performance on the memory-probe task across conditions (SI Appendix, Part C), in line with prior fMRI findings (64).

Second, the build-up effect cannot be the result of an overall better performance on the memory-probe task in the sentence condition. One could, in principle, imagine that trials where the memory-probe task is answered correctly are the ones that show an increase over the course of the sentence. Because there are more correctly answered trials in the sentence condition, the build-up effect may emerge in the sentence condition, but not other conditions. This possibility is already unlikely, given the pattern of accuracies across conditions: for example, the word-list condition does not show a significant build-up despite the fact that the accuracies for that condition are similar to those of the sentence condition. However, to test this possibility directly, we compared the time-courses of high γ-responses for correctly vs. incorrectly answered trials in each of the three conditions that failed to show a build-up effect (we could not perform this comparison for the sentence condition given that there were hardly any incorrectly answered trials). As Fig. 4 shows, the increase does not appear to depend on whether the trial was answered correctly: in the conditions other than the sentence condition, neither the correctly nor the incorrectly answered
Comparison of percent signal change (PSC) of correctly and incorrectly answered trials in the word-lists (A), Jabberwocky (B), and non-word-lists (C) conditions, averaged across subjects. For comparison, we include the average of the correctly answered sentence trials (there were too few subjects with incorrectly answered sentence trials to compute averages). Error bars indicate SEMs over subjects.

Fig. 4. Comparison of percent signal change (PSC) of correctly and incorrectly answered trials in the word-lists (A), Jabberwocky (B), and non-word-lists (C) conditions, averaged across subjects. For comparison, we include the average of the correctly answered sentence trials (there were too few subjects with incorrectly answered sentence trials to compute averages). Error bars indicate SEMs over subjects.
In summary, we report here a striking and robust phenomenon: a monotonic increase in neural activity over the course of a sentence as the subject processes it. This effect occurs for sentences, but not for word meanings or syntactic structure alone, ruling out most domain-general accounts and implicating in the effect a quintessential property of language: compositionality. Although these results certainly do not give us a full account of how sentence meaning is constructed and represented neurally, they do provide a new window into how that process unfolds over time, and a powerful method for understanding the sequence of neural events that underlie the extraction of complex linguistic meanings in future work.

Materials and Methods

Participants. We recorded electrical activity from intracranial electrodes of six subjects (five female, aged 14–29 y) with intractable epilepsy who read sentences, lists of words, Jabberwocky sentences, and lists of nonwords. These subjects underwent temporary subdural implantation of subdural electrode arrays at Albany Medical College to localize the epileptogenic zones and to delineate them from eloquent cortical areas before brain resection. All of the subjects gave informed written consent to participate in the study, which was approved by the Institutional Review Board of Albany Medical College. Two subjects were excluded from the main analyses because only two electrodes in each subject met our criteria for inclusion in this study. However, their data were qualitatively and quantitatively similar and are included in SI Appendix, Part D.

Operation. One further subject was tested but excluded from all analyses due to difficulties in performing the task (i.e., pressing multiple keys, looking away from the screen) during the first five runs. After the first five runs, the subject required a long break during which a seizure occurred.

Materials and Procedure. In an event-related design, subjects read sentences, lists of words, Jabberwocky sentences, and lists of nonwords. The materials were adapted from ref. 28. Each event (trial) consisted of eight words/nonwords, presented one at the time at the center of the screen. At the end of each sequence, a memory probe was presented (a word in the sentence and word-list conditions, and a nonword in the Jabberwocky and nonword-list conditions) and participants had to decide whether or not the probe had appeared in the preceding sequence by pressing one of two buttons. Two different presentation rates were used: S1, S5, and S6 viewed each word/nonword for 450 ms (fast-timing), and S2, S3, and S4 viewed each word/nonword for 700 ms (slow-timing). The presentation speed was determined before the experiment and was based on the participant’s preferences. After the last word/nonword in the sequence, a fixation cross was presented for 250 ms, followed by the probe item (1,400 ms fast-timing, 1,900 ms slow-timing), and a postprobes question (250 ms, behavioral response and signal recording). After each trial, a fixation cross was presented for a variable amount of time, semirandomly selected from a range of durations from 0 to 11,000 ms, to obtain a low-level baseline for neural activity.

Trials were grouped into runs to give participants short breaks throughout the experiment. In the fast-timing version of the experiment, each run included eight trials per condition and lasted 220 s, and in the slow-timing version, each run included six trials per condition and lasted 264 s. The total amount of intertrial fixation in each run was 44 s for the fast-timing version and 72 s for the slow-timing version. All subjects completed 10 runs of the experiment, for a total of 80 trials per condition in the fast-timing version and 60 trials per condition in the slow-timing version.

Data Collection and Analysis. The implanted electrode grids consisted of platinum-iridium electrodes that were 4 mm in diameter (2.3–3 mm exposed) and spaced with an interelectrode distance of 0.6 or 1 cm. The total numbers of implanted electrodes were 120, 128, 112, 134, 98, and 36 for the six subjects, respectively (Table 1). Electrodes were implanted on the left hemisphere for all subjects except S6, who had bilateral coverage (16 left hemisphere electrodes). Signals were digitized at 1,200 Hz. Recordings were synchronized with stimulus presentation and stored using the BCI2000 software platform (83, 84). Upon visual inspection of the recordings, we removed reference electrodes, ground, and electrodes with high noise levels and interictal activity as revealed by independent analyses, which left 117, 84, 124, 87, and 33 electrodes for the six subjects, respectively.

Cortical Mapping. We defined the brain anatomy of each subject using preoperative MRI scans, and the location of the electrodes using postoperative computed tomography (CT) imaging. We then created a 3D surface model of each subject’s cortex from the MRI images, coregistered it with the location of the electrodes given by the images using Curry Software (Compumedics NeuroScan).

Extraction of ECoG Signal Envelope. ECoG recordings were first high-pass-filtered at a frequency of 0.5 Hz and spatially distributed noise common to all electrodes was removed using a common average reference spatial filter. Notch filters removed further noise at 60, 120, 180, and 240 Hz. An IIR band-pass filter was used to select high γ-frequencies (70–170 Hz) over the course of the ECoG signal (i.e., the magnitude of the analytic signal) in the high γ-band was computed by taking the absolute value of the Hilbert transform of the resulting signal. The signal envelopes were further low-pass-filtered at 100 Hz and down-sampled to 300 Hz to reduce noise.

Selecting EOIs. Step 1: Selection of language-responsive electrodes. Language-responsive electrodes were defined as electrodes in which the envelope of the high γ-signal is significantly higher for trials of the sentence condition than the nonword-list condition. To do this, we first computed the mean of the signal envelope for each of the eight word positions (time-locked to the onset of each word/nonword and averaging over the presentation window) in each trial for each condition in each electrode, using data from the odd-numbered runs only (see SI Appendix, Part A). With sample EOIs with high γ-signal and averaging). We then computed the mean across the eight word positions in each trial for each condition in each electrode. Finally, we correlated the trial means with a vector of condition labels (sentences = 1, nonword-lists = −1). The resulting Spearman’s ρ provided a benchmark against which to test the significance of any positive correlations. The condition labels vector was randomly reordered (via randomization test with 1,000 random permutations) and a new Spearman’s ρ was computed, and this process was repeated 1,000 times. The fraction of correlations from randomly assigned labels that produced a higher ρ than the benchmark correlation became our P value. Electrodes with P ≤ 0.01 and a positive ρ were included in step 2.

Step 2: Selection of the subset of language-responsive electrodes exhibiting an increase across word positions in the sentence condition. These electrodes were defined as electrodes that exhibited a monotonic increase in high γ-signal over the course of a sentence. To do this, we computed the mean of the high γ-envelope for each word position in the sentence condition and then computed the Spearman’s rank correlation coefficient, which measures statistical dependence without assuming linearity, between word position (one through eight) and mean signal magnitude at each position within each sentence trial, separately for each electrode. As in step 1, we again only used the data from odd-numbered runs. A two-tailed one-sample t test was performed and electrodes with mean correlations that were significantly different from zero (P ≤ 0.01) were selected as our EOIs and were included in all of the analyses reported here.

ACKNOWLEDGMENTS. We thank Ted Gibson, Charles Jennings, Roger Levy, Kyle Mahowald, Steve Pantazadis, and Nathaniel Smith for providing helpful comments on this work; Eyal Dechter for help with setting up the experiment; Steve Pantazadis and Kyle Mahowald for providing some word-level features extracted from corpora; and Zuzanna Baleski and Ted Gibson for help with collecting norming data on Mechanical Turk. This research was supported by the NIH (Grants EB00856, EB006356, and EB018783), the US Army Research Office (Grants W911NF-08-01-0216, W911NF-12-1-0109, W911NF-14-1-0440), and Fondazione Neurone. E.F. was supported by National Institute of Child Health and Human Development Award HD-057522.

