Multiple mechanisms contribute to double-strand break repair at rereplication forks in Drosophila follicle cells

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

As Published	http://dx.doi.org/10.1073/pnas.1617110113
Publisher	National Academy of Sciences (U.S.)
Version	Final published version
Accessed	Wed Mar 13 05:58:03 EDT 2019
Citable Link	http://hdl.handle.net/1721.1/108854
Terms of Use	Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use.
Detailed Terms	
Multiple mechanisms contribute to double-strand break repair at rereplication forks in *Drosophila* follicle cells

Jessica L. Alexander¹,², Kelly Beagan¹, Terry L. Orr-Weaver¹,², and Mitch McVey¹,²

¹Whitehead Institute for Biomedical Research, Cambridge, MA 02142; ²Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142; and ³Department of Biology, Tufts University, Medford, MA 02155

Contributed by Terry L. Orr-Weaver, October 18, 2016 (sent for review July 30, 2016; reviewed by Johannes Walter and Xiaohua Wu)

Rereplication generates double-strand breaks (DSBs) at sites of fork collisions and causes genomic damage, including repeat instability and chromosomal aberrations. However, the primary mechanism used to repair rereplication DSBs varies across different experimental systems. In *Drosophila* follicle cells, developmentally regulated rereplication is used to amplify six genomic regions, two of which contain genes encoding eggshell proteins. We have exploited this system to test the roles of several DSB repair pathways during rereplication, using fork progression as a readout for DSB repair efficiency. Here we show that a null mutation in the microhomology-mediated end-joining (MMEJ) component, polymerase θ/mutagen-sensitive 308 (*mus308*), exhibits a sporidaic eggshell phenotype and reduced chorion gene expression. Unlike other thin eggshell mutants, *mus308* displays normal origin firing but reduced fork progression at two regions of rereplication. We also find that MMEJ compensates for loss of nonhomologous end joining to repair rereplication DSBs in a site-specific manner. Conversely, we show that fork progression is enhanced in the absence of both *Drosophila* Rad51 homologs, spindle-A and spindle-B, revealing homologous recombination is active and actually impairs fork movement during follicle cell rereplication. These results demonstrate that several DSB repair pathways are used during rereplication in the follicle cells and their contribution to productive fork progression is influenced by genomic position and repair pathway competition. Furthermore, our findings illustrate that specific rereplication DSB repair pathways can have major effects on cellular physiology, dependent upon genomic context.

Repeated activation of the same DNA replication origin, termed "rereplication," is one developmental strategy to increase gene copies for high levels of protein production. However, it also generates DNA double-strand breaks and can lead to genome instability. We present evidence for competition between different pathways of double-strand break repair during rereplication in *Drosophila* follicle cells. Loss of DNA polymerase θ (Pol θ), which operates in an error-prone repair mechanism named "microhomology-mediated end joining," impedes the progress of rereplication forks at a specific genomic locus. Pol θ-mediated repair is also used in the absence of classical end joining, but only at certain regions. Our findings suggest that genomic context has a major impact on genomic stability and mutagenesis in rereplicating DNA.

Significance

*Repeated activation of the same DNA replication origin, termed “rereplication,” is one developmental strategy to increase gene copies for high levels of protein production. However, it also generates DNA double-strand breaks and can lead to genome instability. We present evidence for competition between different pathways of double-strand break repair during rereplication in *Drosophila* follicle cells. Loss of DNA polymerase θ (Pol θ), which operates in an error-prone repair mechanism named “microhomology-mediated end joining,” impedes the progress of rereplication forks at a specific genomic locus. Pol θ-mediated repair is also used in the absence of classical end joining, but only at certain regions. Our findings suggest that genomic context has a major impact on genomic stability and mutagenesis in rereplicating DNA.*

Reviewers: J.W., Harvard Medical School; and X.W., The Scripps Research Institute.

The authors declare no conflict of interest.

Ffreely available online through the PNAS open access option.

Data deposition: The aCGH datasets have been deposited in the Gene Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession nos. GSM432742 and GSM1354444 (wild-type controls), GS686651 (s9g4, spin-A, and brca2 mutants), and GSE86012 (all other mutant data reported here)).

¹J.L.A. and K.B. contributed equally to this work.

²To whom correspondence may be addressed. Email: mitch.mcvey@tufts.edu or weaver@wi.mit.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1617110113/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1617110113

PNAS | November 29, 2016 | vol. 113 | no. 48 | 13809–13814
mechanisms of DSB repair required to maintain fork elongation during rereplication. Rereplication occurs at six loci, termed Drosophila amplicons in follicle cells (DAFCs). The DAFCs have specific replication origins that use the same machinery as the canonical S phase (13). Bidirectional fork movement away from the origin produces a gradient of amplified DNA spanning ~100 kb at each DAFC (14). One of the defining features of DNA rereplication in follicle cells is the amplification of the eggshell (chorion) protein genes (13). Two chorion gene clusters, located on the X and third chromosomes, undergo rereplication to increase gene copy number 16- and 60-fold, respectively (13). Female flies with hypomorphic alleles of genes involved in origin firing exhibit reduced gene amplification, resulting in deficient chorion production and a visible thin eggshell phenotype (13). Gene amplification is therefore a developmental strategy to increase the amount of DNA template available for transcription so that a large amount of protein can be produced in just a few hours.

Precise and coordinated timing of rereplication origin firing at the DAFCs makes the follicle cells an ideal system in which to track fork progression. Origin firing at the DAFCs begins at a specific developmental stage, 10B, across all follicle cells of a given egg chamber in the absence of genome-wide replication (13). This exact timing of origin firing permits identification of replication forks at defined points after replication initiation, allowing real-time tracking of fork progression. Defined timing of replication initiation also enables fork progression to be compared between different mutants, making it possible to dissect the pathways involved in maintaining fork elongation after rereplication events (15).

We previously found that fork progression at the DAFCs is reduced in the DNA ligase 4 (Lig4) null mutant (16), implicating NHEJ for the efficient repair of DSBs at damaged rereplication forks. Here we use this developmental system to evaluate the contribution of Pol θ-mediated MMEJ to DSB repair during rereplication. We find that Pol θ has site-specific effects on rereplication fork progression, suggesting MMEJ is particularly important for rereplication DSB repair in certain genomic contexts. Furthermore, we uncover compensatory repair mechanisms that operate in the absence of individual repair pathways and show evidence for antagonistic effects between NHEJ and HR.

Results

Absence of Pol θ Perturbs Chorion Gene Transcription and Eggshell Formation. Pol θ is important for MMEJ repair of DSBs in many organisms, including Drosophila, Caenorhabditis elegans, zebrafish, and mice. In C. elegans, it is essential for repair of DSBs located at the site of collapsed replication forks (17). Pol θ and other replication-related genes are frequently overexpressed in a number of cancer types and high levels of Pol θ expression strongly correlate to poor patient survival (18). This overexpression may confer an advantage to cancer cells and alleviate replication stress by promoting DSB repair at sites of replication fork collapse. We therefore investigated whether Pol θ, encoded by mutagen-sensitive 308 (mus308) in Drosophila (12), is involved in DSB repair during rereplication in Drosophila follicle cells and whether its loss might impair the production of proteins involved in eggshell development. Indeed, we found that null mutants in mus308 exhibit a sporadic eggshell defect (Fig. 1.A, ii and vii), indicating MMEJ repair may be required for gene amplification. During the process of chorion deposition, follicle cells leave behind an obvious hexagonal “footprint” (Fig. 1.A, v) (19). We found that these chorion footprints are diminished in mus308 mutants (Fig. 1.A, vii). The mus308 phenotype differs from other amplification mutants (13), because the defects are variable both between eggs and within individual eggs, resulting in a “patchy” eggshell with uneven chorion deposition that affects 41% of eggs oviposited (Fig. 1.A, iii and B). These eggshells have a glassy appearance within the patches of reduced chorion footprints (Fig. 1.A, iii). Consistent with the eggshell defects, eggs laid by mus308 females exhibit only a 4.97% hatching frequency (percentage of eggs with uneven chorion deposition) in wild-type and mutant backgrounds. N = 155 (wild type), 422 (lig4), 429 (mus308), and 57 (lig4; mus308). (C) Hatching frequency (percentage of eggs with empty eggshells) for wild-type vs. mus308, and lig4; mus308 females. Error bars are the SD of three independent trials. A total of 300-500 eggs were scored for each trial of wild-type control and mus308 and 30-60 eggs for each trial of lig4; mus308.

A thin eggshell phenotype is commonly the result of mutations that reduce the number of origin firings at the DAFCs, resulting in less DNA template for chorion gene transcription (13). We measured copy number over the DAFC origins by quantitative PCR (qPCR) at the final stage of amplification, stage 13. We found that copy number is not significantly reduced at any of the DAFCs in mus308 follicle cells relative to wild type (Fig. S1A). Therefore, the mus308 thin eggshell phenotype is not caused by reduced origin firing at the DAFCs.

To determine whether chorion gene transcription is reduced independently of amplification levels, we measured relative mRNA levels by RT-qPCR from stage 13 egg chambers. We found that mus308 mutants have significantly decreased levels of chorion transcripts at four of the six genes measured, located within both DAFC-7F and DAFC-6D: Cpt7Fa, Cpt38, Cpt16, and Cpt18 (Fig. 2). Therefore, loss of Pol θ function likely causes a thin eggshell phenotype by reducing mRNA expression of the chorion genes.

Follicle Cell Replication Programs Occur Normally in Pol θ Mutants. During their differentiation, follicle cells go through two cell cycle transitions that are coordinated with the egg chamber developmental stages. The follicle cells proliferate by mitosis during stages 1–6, increase their genome ploidy to 16C via the endocycle in stages 7–9, and finally undergo amplification beginning in stage 10B through the end of follicle cell development in stage 13 (20). To determine whether defects in DNA replication and/or repair before gene amplification could contribute to the unusual mus308 eggshell phenotype, we examined the
replication program across follicle cell development. Accumulation of unrepair DSBs can lead to checkpoint activation and cell cycle arrest (21). Therefore, we reasoned that DSBs could go unrepaired in the absence of the MMEJ pathway and thus delay cell cycle progression in the follicle cells. To ensure that mus308 follicle cells complete mitosis at the appropriate stages, we isolated whole ovaries from wild-type and mus308 females and stained with antibodies against phosphorylated histone H3, a marker of mitosis (22). We found mus308 mutants undergo mitosis until stage 6, indicating that mitotic cell cycle progression is not affected by loss of Pol θ (Fig. S2A). We also measured the relative amount of 2C, 4C, 8C, and 16C follicle cell populations by FACS sorting (Fig. S2B). The percentage of nuclei in each peak was comparable between mus308 and wild type, consistent with mus308 follicle cells completing three endocycles without cell cycle delays (Fig. S2B, Right).

To confirm that amplification initiates normally in mus308 mutants, we labeled follicle cells with the thymidine analog ethynyl deoxyuridine (EdU), which specifically marks the DAFCs due to the absence of genome-wide replication after stage 9 (13). EdU labeling confirmed that amplification initiates across all follicle cells at stage 10B in both wild-type and mus308 egg chambers, consistent with the proper timing of origin firing (Fig. S2C). Together, these data demonstrate that cell cycle progression and the developmental onset of gene amplification occur normally in mus308 follicle cells and that the absence of Pol θ does not perturb follicle cell development.

MMEJ Is Required for Continued Fork Progression During Rereplication in a Site-Specific Manner. We previously found that rereplication at the DAFCs generates DSBs, requires the DNA damage response, and the NHEJ repair component Lig4 is necessary for continued fork progression (16). The mus308 mutant permitted us to evaluate potential contributions of MMEJ to repair of DSBs due to rereplication. We first asked whether DSBs were present in mus308 mutants by staining EdU-labeled follicle cells with antibodies against the DSB marker γH2Av. Similar to wild type, γH2Av colocalized with EdU beginning in stage 10B in mus308 follicle cells (Fig. S2D), indicating DNA damage is generated and detected by the checkpoint.

To evaluate the role of MMEJ in repair of DSBs at the DAFCs, we measured fork progression at the DAFCs in mus308 follicle cells. Unrepaired DSBs within the DAFCs will block all subsequent replication forks on the same DNA strand from moving beyond the break site, reducing overall fork progression. We measured fork progression using microarray comparative genomic hybridization (aCGH) paired with half-maximum distance analysis. This analysis uses aCGH to measure copy number across each of the DAFCs, followed by calculating the distance between the left and right sides of half-maximum copy number. Reduced fork progression results in a more rapid decrease in copy number and therefore lower half-maximum values (16). Half-maximum analysis was done for five of the six DAFCs. DAFC-22B is a strain-specific amplicon (14) and thus cannot be compared across all of the mutants analyzed here.

The half-maximum distance was reduced significantly only at DAFC-66D and -7F in mus308 follicle cells compared with wild-type OrR (Fig. 3A). Interestingly, these are the same two DAFCs that contain the chorion genes that exhibit reduced transcript levels in mus308 (Fig. 2). The reduced half-maximum distance at DAFC-7F is caused by an asymmetric decrease in the gradient, in which the copy number decreases rapidly within a 20-kb region on the right side of the amplicon (Fig. 3B). The site of impeded fork progression is not coincident with the chorion genes, but localizes 10 kb downstream of the most 3′ DAFC-7F chorion gene, Cp38 (Fig. 3B). At DAFC-66D, copy number is reduced symmetrically on either side of the gradient (Fig. S3), about 5–10 kb from the 5′ and 3′ ends of the chorion genes. Thus, both transcription and

![Figure 2](image.png)

Fig. 2. Pol 0-mediated end joining is required for normal chorion transcript levels. RT-qPCR was performed with cDNA from stage 13 egg chambers. The relative transcript amount (shown on y axis) was calculated by first calibrating to the control gene transcript Rp49, and then comparing that change to wild-type mus308/TM6B siblings. Error bars are the SD of two biological replicates. Significance was measured by Fisher’s least significant difference (LSD). *P < 0.05, **P < 0.01, ***P < 0.001.

![Figure 3](image.png)

Fig. 3. MMEJ is nonredundant with NHEJ and required for fork progression at DAFC-7F and DAFC-66D. (A) The half-maximum distance was calculated in the wild-type OrR and mutant backgrounds for each DAFC. Half-maximum distances from mus308 and lig4 are compared with wild type and lig4; mus308 distances are compared with lig4. All lig4; mus308 distances are significantly reduced compared with wild type. The lig4 half-maximum distances are the same as those previously published (16). Error bars are the SD of three biological replicates. Significance was measured by Fisher’s LSD. *P < 0.05. (B) aCGH at DAFC-7F in wild-type OrR and repair mutants. DNA from stage 13 egg chambers was competitively hybridized with diploid embryonic DNA to microarrays with approximately one probe every 125 bp. Chromosomal position is plotted on the x axis; the log2 ratio of stage 13 DNA to embryonic DNA is plotted on the y axis. Genie locations are displayed below the CGH data. (Bottom) Close-up of the chorion genes.
replication fork progression are reduced at DAFC-66D and -7F in mus308 follicle cells, but the effects on fork progression are manifest at distinct positions along the amplification gradients.

The normal half-maximum distances observed at the other DAFCs in mus308 mutants, in contrast to the effects of loss of Lig4 (16), reveal that the MMEJ pathway is not essential for DSB repair during rereplication. It is possible that there is partial redundancy between the NHEJ and MMEJ pathways, with MMEJ serving as a backup and NHEJ being the primary mechanism. We evaluated this by measuring fork progression at the DAFCs in a lig4; mus308 double mutant. The half-maximum distance was reduced significantly compared with the lig4 single mutant at two sites, DAFC-30B and -66D, whereas the other three sites were not significantly different from lig4 (Fig. 3A). As expected, all five sites had a reduced half-maximum distance compared with wild type. Thus, MMEJ contributes to repair of DSBs at some but not all of the DAFCs.

The single mus308 and lig4 mutants did not reduce DNA copy number at any amplicon peak and thus did not affect origin firing (Fig. S3) (16). In contrast, copy number over the aCGH gradient peaks was reduced at all of the DAFCs in the lig4; mus308 double mutant (Fig. S3). This could reflect either a requirement for either Lig4 or Pol δ for origin firing, the ability of stalled forks to inhibit activation of an adjacent origin, or a developmental delay in origin firing. If the latter were true, then the reduced half-maximum distance in lig4; mus308 could be the result of fork elongation starting at a later time rather than impaired fork progression. We analyzed the timing of origin firing by quantifying copy number at the DAFC origins from staged lig4; mus308 mutant egg chambers. We found that although the total copy number was reduced in lig4; mus308 mutants, the proper timing of amplification initiation was maintained during egg chamber development (Fig. S1B). Therefore, although origin firing is inhibited, the decreased half-maximum distances in lig4; mus308 reflect impeded fork progression.

Given the reduced copy number of chorion genes in the lig4; mus308 mutant follicle cells, we examined eggshell morphology and fertility. Whereas eggs lacking lig4 alone were largely phenotypically normal (Fig. 1 A, ii and vii and B), disrupting lig4 in addition to mus308 greatly exacerbated the thin-eggshell phenotype (Fig. 1 A, iv and vii and B). Eggs laid by lig4; mus308 females had diminished follicle cell footprints across the egg (Fig. 1 A, vii), giving these eggs a fully glassy appearance (Fig. 1 A, iv). These eggshell defects were observed in 100% of the eggs laid by lig4; mus308 females, consistent with the 0% hatching frequency (Fig. 1 B and C). We measured relative chorion transcripts by RT-qPCR, and found that in the double mutant the chorion transcripts were significantly decreased at five of the six genes measured (Fig. 2). These results are consistent with the decreased gene copy number at both amplicons (Fig. S1). Together, these results show that absence of both the NHEJ and MMEJ pathways reduces rereplication origin firing, thus reducing transcript levels of the chorion genes and generating uniformly thin eggshells.

Repair by Homologous Recombination Inhibits Follicle Cell Rereplication Fork Progression. We previously found that fork progression is not decreased in spindle-A (spn-A)/rad51 or brca2 mutant follicle cells (16), leading us to conclude that HR is not used for repair at the DAFCs. However, the Drosophila genome contains two Rad51 homologs: the ubiquitously expressed spn-A (23) and the ovary-specific spindle-B (spn-B) (24). To be confident that we were measuring fork progression in the complete absence of Rad51 activity, we performed aCGH and measured the half-maximum distance across each DAFC in spn-A, spn-B double-mutant follicle cells. In contrast to perturbation of NHEJ or MMEJ, we found the half-maximum distances were increased at all DAFCs in the double mutant, although this increase was statistically significant at only three of the five DAFCs: DAFC-30B, -66D, and -7F (Fig. 4 and Fig. S3). Additionally, reanalysis of all HR mutant data revealed that the half-maximum distance was also significantly increased in brca2 follicle cells at DAFC-30B and -66D, and at DAFC-66D in spn-A single mutants (Fig. 4). Although disruption of HR affected fork progression, there was no effect on copy number at the origin (Fig. S3). These results demonstrate that HR is active during rereplication in the follicle cells, and its activity is inhibitory to replication fork progression.

Fork Progression Is Reduced in Two Break-Induced Replication Mutants. Break-induced replication (BIR) can be used for DSB repair and reestablishment of a replication fork (25), making this pathway an interesting possibility for repair of single-ended DSBs thought to be generated during rereplication (26). To test the role of BIR in repair of rereplication DSBs, we measured fork progression in flies lacking the BIR components Pol32 (27) and Pif1 (28). We observed that the half-maximum distance is significantly reduced at all DAFCs in pol32 and pif1 mutant follicle cells (Fig. S4). Although these results are consistent with BIR contributing to fork progression at the amplicons, both Pol32 and Pif1 are involved in other aspects of fork progression. Polδ processivity is reduced in the absence of Pol32 (29), and the Pif1 helicase is required for replication through G-quadruplex (G4) secondary structures and hard-to-rePLICATE regions (30). Thus, it remains possible that these other functions account for the measured decrease in fork progression in pol32 and pif1 mutants.

Discussion

The Drosophila follicle cell amplicons provide a powerful model to delineate the role of distinct repair pathways in the repair of DSBs resulting from rereplication. We find that a unique repair profile exists for each DAFC that could be influenced by sequence context, chromosomal location, and developmental timing. Pol δ-mediated MMEJ is required at two positions and it can compensate for NHEJ at some, but not all DAFCs. Interestingly, antagonism between HR and NHEJ to repair DSBs also occurs at specific DAFCs.

Our results establish that female Drosophila lacking the Pol δ homolog exhibit a patchy, thin-eggshell phenotype linked to reduced expression of chorion genes from DAFC-66D and -7F, but there is no effect on origin firing in the mutant. This apparent effect of Pol δ on transcription may reveal an interesting conflict between replication and transcription in the follicle cells during amplification. Because fork progression is reduced at both DAFCs, collapsed forks and unrepairp DSBs likely accumulate 5–10 kb from the chorion genes. Several studies have found that DSB generation leads to a decrease in local transcription, and a recent study in yeast found that a single unrepairped DSB reduces transcription up to 10 kb away on either side of the break site (31). We therefore propose that the absence of MMEJ repair leads to an accumulation of DSBs, inhibiting both fork progression and transcription at certain DAFCs.
How Might Various Repair Mechanisms Affect Replication Fork Progression? The fork collision model (2) predicts that collapsed replication forks generate single-ended DSBs when a fork meets an unligated Okazaki fragment or overtakes the leading strand of the fork in front of it (26) (Fig. S5A). Pol 0 has recently been shown to repair collapsed replication forks at a substantially higher rate than wild-type forks in C. elegans (17). Thus, Pol 0 might also maintain fork progression at the DAFCs via microhomology-mediated replication fork restart at a one-ended DSB (Fig. S5A). This model is supported by the observation that human bone marrow stromal cells lacking Pol 0 are sensitive to camptothecin, which induces one-ended DSBs (32). Such one-ended breaks are also ideal substrates for repair by BIR, which establishes a new replication fork on a homologous template (28) (Fig. S5A). However, BIR relies on many components required to establish canonical replication forks (27), making it difficult to study the role of BIR at the DAFCs by our current half-maximum analysis. Despite the importance of Pol32 and Pif1 in other aspects of fork progression and repair, the reduced half-maximum distances in these mutants do support the possibility that BIR is important for repair of broken replication forks.

Reduced fork progression at the DAFCs in lig4 follicle cells implies two-ended DSBs are also generated during rereplication events (16). It was previously shown that two or more consecutive rounds of rereplication cause DNA fragmentation although the majority of these fragments were generated from the newly rereplicated DNA, a small proportion was in the template strand (2). Fragmentation of the DNA backbone suggests multiple one-ended DSBs are generated during rereplication, which could be repaired by end-joining mechanisms (Fig. S5B). Additionally, removal of extrachromosomal fragments formed during rereplication fork collapse was predicted to generate two-ended DSBs (11) (Fig. S5C). Thus, multiple rounds of rereplication at the DAFCs may produce numerous two-ended DSBs that could be repaired by NHEJ and MMEJ. It is important to note that DSB repair by end joining is not expected to restore the broken replication fork, but would repair the template strand for continued progression of subsequent forks.

Competition Between Repair Mechanisms During Rereplication. Decreased fork progression in the mus308 mutant is observed at DAFC-66D and within a defined 20-kb region of DAFC-7F (17). Thus, revealing these positions are especially dependent on MMEJ repair when the NHEJ pathway is intact. It is possible that the primary sequences at these sites are more favorable for MMEJ repair than the other DAFCs. In C. elegans, the Pol 0 homolog repairs DSBs generated by collapsed replication forks at G4 secondary structures when the G4-unwinding helicase Dog-1 (FanCJ) is depleted (17). It is possible that G4 and/or other secondary structures form when extensive single-stranded DNA is generated during rereplication. Thus, specific regions of DAFC-66D and -7F may contain sequence motifs that are especially sensitive to loss of Pol 0.

The half-maximum distances in the lig4; mus308 double mutant reveal that MMEJ can compensate for loss of NHEJ at DAFC-30B and -66D, but not at DAFC-7F, -34B, or -62D. MMEJ is also used for repair after rereplication in human cells, but with reduced efficiency compared with HR (11). This finding is consistent with our observation that MMEJ cannot repair all rereplication DSBs in the follicle cells. It is interesting that although DAFC-7F exhibits reduced fork progression in the absence of either NHEJ or MMEJ, there is no additional effect when both repair pathways are inhibited. However, examination of the aCGH gradients illustrates that loss of these two end-jointing pathways influences fork progression at different positions. Whereas fork progression is reduced throughout DAFC-7F in lig4 mutants (16), follicle cells in flies lacking Pol 0 exhibit an asymmetric reduction in fork progression within a 20-kb region on the right side of the amplicon. This asymmetry is alleviated in lig4; mus308 mutants and the gradient resembles that of lig4 alone. It is interesting to speculate that in wild-type follicle cells, MMEJ competes with NHEJ for repair substrates within this region. In mus308 follicle cells, competition from MMEJ is removed and thus most DSBs are directed to NHEJ repair. If NHEJ alone cannot efficiently repair DSBs within this region, overall fork progression is decreased. In the absence of both NHEJ and MMEJ, one or more pathways that are not constrained by sequence context may act to repair DSBs in this region.

Increased fork progression in the spn-A, spn-B mutant reveals that HR is active during rereplication in the follicle cells and competes with NHEJ for DSB substrates. This competition can be understood in the context of the kinetics of HR, as this pathway likely is too slow for productive DSB repair before the end of follicle cell development. Experiments measuring repair of targeted DSBs estimate HR takes 5–7 h to complete, whereas NHEJ takes 30–70 min (33–35). Amplification in the follicle cells occurs over a 7.5-h developmental window (20). Our aCGH experiments were performed on stage 13 follicle cell DNA, the final stage of development, which lasts for 1 h; this timing places our aCGH measurements 6.5–7.5 h after the first origin firing. Therefore, DSB repair by HR may not be able to promote fork progression within this developmental timescale. This idea is illustrated by the increased half-maximum distances in HR mutants. Absence of HR likely directs more DSBs to the faster NHEJ pathway, thus enhancing overall fork progression.

Alternatively, Rad51-dependent HR might also be used to restart stalled or broken replication forks via template switching. The existence of multiple homologous templates might result in recombination intermediates that could impede rereplication fork progression. Multiple rounds of template switching following replication fork collapse have been previously observed in human cells (36, 37). In Drosophila follicle cells, loss of Rad51-mediated template switching might also explain the increased fork progression observed in spn-A, spn-B mutants.

It is notable that fork progression at DAFC-34B and -62D is not affected by loss of HR components, nor is there an additional decrease in fork progression in lig4; mus308 compared with lig4 alone. It therefore seems that only NHEJ can efficiently repair DSBs to maintain fork movement at these two sites. This dependence on NHEJ may be due to the timing of origin firing. Amplification origins initiate during stages 10B–11 of egg chamber development (DAFC-34B, -30B, and -66D) (38). However, DAFC-34B and -62D undergo another discrete round of origin firing during stage 13 (38, 39) and thus complete fork elongation in only 1 h. Therefore, NHEJ may be the only pathway fast enough to repair DSBs generated from the final origin firing events before the end of follicle cell development.

We also find that the total number of origin firings is reduced in lig4; mus308 follicle cells across all of the DAFCs. Human Pol 0 was shown to interact with Orc2 and Orc4 and thus can localize to replication origins (12). It additionally was suggested that Pol 0 is important for the temporal regulation of origin firing, although its exact role remains unclear (12). In contrast, our results show that the timing of origin firing is maintained in lig4; mus308, albeit reduced, and mus308 alone has no effect on the level of origin firing during amplification. It is possible that in the absence of both NHEJ and MMEJ, unrepair DSBs could activate the S-phase checkpoint and thus inhibit origin firing (21). We previously found that null mutations in chkl and chkd do not increase the number of origin firings at the DAFCs (16), contrary to what would be expected if the checkpoint regulates amplification origins. We cannot rule out the possibility, however, that absence of both end-joining repair mechanisms leads to an accumulation of DSBs that may pass a threshold for checkpoint activation and thereby inhibit origin firing.

Measuring fork progression at the DAFCs by aCGH is a sensitive and robust tool for the discovery of factors and pathways required for fork progression. Nevertheless, it is limited to pathways with unique genetic components. Deep sequencing of repair junctions

Alexander et al.
would circumvent these constraints by defining sequence changes diagnostic for each pathway (40). Such a future study will require isolation of purified follicle cells to eliminate contributions from nurse cell system DNA undergoing degradation during the stages of egg chamber development in which amplification occurs. This model system will additionally permit future analysis of DNA sequences or chromatin configurations that impact the requirement for distinct repair pathways and that promote fork collapse or stalling.

Materials and Methods

Fly Strains. The details of the genotypes and sources of the Drosophila strains are presented in SI Materials and Methods.

Egg Collection and Scoring. Females were fattened on wet yeast overnight and then placed in a cage with a grape agar plate. The plate was switched every 8–12 h. Eggs were scored for presence or absence of eggshell abnormalities, including missing or misshapen protein. For imaging, eggs were rinsed twice with PBS, then placed on a glass slide. Images were captured on a Leica MZ16D stereo microscope and a Spot RT3 camera. For hatching frequency, eggs were kept on grape plates at 25 °C for 48 h and then scored as hatched or unhatched.

SEM. Egg Collection and Scoring. Eggs were scored for presence or absence of eggshell abnormalities, including missing or misshapen protein. For imaging, eggs were rinsed twice with PBS, then placed on a glass slide. Images were captured on a Leica MZ16D stereo microscope and a Spot RT3 camera. For hatching frequency, eggs were kept on grape plates at 25 °C for 48 h and then scored as hatched or unhatched.

SEM. Egg Collection and Scoring. Eggs were scored for presence or absence of eggshell abnormalities, including missing or misshapen protein. For imaging, eggs were rinsed twice with PBS, then placed on a glass slide. Images were captured on a Leica MZ16D stereo microscope and a Spot RT3 camera. For hatching frequency, eggs were kept on grape plates at 25 °C for 48 h and then scored as hatched or unhatched.

SEMs. Egg Collection and Scoring. Eggs were scored for presence or absence of eggshell abnormalities, including missing or misshapen protein. For imaging, eggs were rinsed twice with PBS, then placed on a glass slide. Images were captured on a Leica MZ16D stereo microscope and a Spot RT3 camera. For hatching frequency, eggs were kept on grape plates at 25 °C for 48 h and then scored as hatched or unhatched.

SI Materials and Methods

Egg Collection and Scoring. Eggs were scored for presence or absence of eggshell abnormalities, including missing or misshapen protein. For imaging, eggs were rinsed twice with PBS, then placed on a glass slide. Images were captured on a Leica MZ16D stereo microscope and a Spot RT3 camera. For hatching frequency, eggs were kept on grape plates at 25 °C for 48 h and then scored as hatched or unhatched.

Egg Collection and Scoring. Eggs were scored for presence or absence of eggshell abnormalities, including missing or misshapen protein. For imaging, eggs were rinsed twice with PBS, then placed on a glass slide. Images were captured on a Leica MZ16D stereo microscope and a Spot RT3 camera. For hatching frequency, eggs were kept on grape plates at 25 °C for 48 h and then scored as hatched or unhatched.

Egg Collection and Scoring. Eggs were scored for presence or absence of eggshell abnormalities, including missing or misshapen protein. For imaging, eggs were rinsed twice with PBS, then placed on a glass slide. Images were captured on a Leica MZ16D stereo microscope and a Spot RT3 camera. For hatching frequency, eggs were kept on grape plates at 25 °C for 48 h and then scored as hatched or unhatched.

Egg Collection and Scoring. Eggs were scored for presence or absence of eggshell abnormalities, including missing or misshapen protein. For imaging, eggs were rinsed twice with PBS, then placed on a glass slide. Images were captured on a Leica MZ16D stereo microscope and a Spot RT3 camera. For hatching frequency, eggs were kept on grape plates at 25 °C for 48 h and then scored as hatched or unhatched.

Egg Collection and Scoring. Eggs were scored for presence or absence of eggshell abnormalities, including missing or misshapen protein. For imaging, eggs were rinsed twice with PBS, then placed on a glass slide. Images were captured on a Leica MZ16D stereo microscope and a Spot RT3 camera. For hatching frequency, eggs were kept on grape plates at 25 °C for 48 h and then scored as hatched or unhatched.

Egg Collection and Scoring. Eggs were scored for presence or absence of eggshell abnormalities, including missing or misshapen protein. For imaging, eggs were rinsed twice with PBS, then placed on a glass slide. Images were captured on a Leica MZ16D stereo microscope and a Spot RT3 camera. For hatching frequency, eggs were kept on grape plates at 25 °C for 48 h and then scored as hatched or unhatched.

Egg Collection and Scoring. Eggs were scored for presence or absence of eggshell abnormalities, including missing or misshapen protein. For imaging, eggs were rinsed twice with PBS, then placed on a glass slide. Images were captured on a Leica MZ16D stereo microscope and a Spot RT3 camera. For hatching frequency, eggs were kept on grape plates at 25 °C for 48 h and then scored as hatched or unhatched.

Egg Collection and Scoring. Eggs were scored for presence or absence of eggshell abnormalities, including missing or misshapen protein. For imaging, eggs were rinsed twice with PBS, then placed on a glass slide. Images were captured on a Leica MZ16D stereo microscope and a Spot RT3 camera. For hatching frequency, eggs were kept on grape plates at 25 °C for 48 h and then scored as hatched or unhatched.

Egg Collection and Scoring. Eggs were scored for presence or absence of eggshell abnormalities, including missing or misshapen protein. For imaging, eggs were rinsed twice with PBS, then placed on a glass slide. Images were captured on a Leica MZ16D stereo microscope and a Spot RT3 camera. For hatching frequency, eggs were kept on grape plates at 25 °C for 48 h and then scored as hatched or unhatched.

Egg Collection and Scoring. Eggs were scored for presence or absence of eggshell abnormalities, including missing or misshapen protein. For imaging, eggs were rinsed twice with PBS, then placed on a glass slide. Images were captured on a Leica MZ16D stereo microscope and a Spot RT3 camera. For hatching frequency, eggs were kept on grape plates at 25 °C for 48 h and then scored as hatched or unhatched.

Egg Collection and Scoring. Eggs were scored for presence or absence of eggshell abnormalities, including missing or misshapen protein. For imaging, eggs were rinsed twice with PBS, then placed on a glass slide. Images were captured on a Leica MZ16D stereo microscope and a Spot RT3 camera. For hatching frequency, eggs were kept on grape plates at 25 °C for 48 h and then scored as hatched or unhatched.

Egg Collection and Scoring. Eggs were scored for presence or absence of eggshell abnormalities, including missing or misshapen protein. For imaging, eggs were rinsed twice with PBS, then placed on a glass slide. Images were captured on a Leica MZ16D stereo microscope and a Spot RT3 camera. For hatching frequency, eggs were kept on grape plates at 25 °C for 48 h and then scored as hatched or unhatched.

Egg Collection and Scoring. Eggs were scored for presence or absence of eggshell abnormalities, including missing or misshapen protein. For imaging, eggs were rinsed twice with PBS, then placed on a glass slide. Images were captured on a Leica MZ16D stereo microscope and a Spot RT3 camera. For hatching frequency, eggs were kept on grape plates at 25 °C for 48 h and then scored as hatched or unhatched.

Egg Collection and Scoring. Eggs were scored for presence or absence of eggshell abnormalities, including missing or misshapen protein. For imaging, eggs were rinsed twice with PBS, then placed on a glass slide. Images were captured on a Leica MZ16D stereo microscope and a Spot RT3 camera. For hatching frequency, eggs were kept on grape plates at 25 °C for 48 h and then scored as hatched or unhatched.

Egg Collection and Scoring. Eggs were scored for presence or absence of eggshell abnormalities, including missing or misshapen protein. For imaging, eggs were rinsed twice with PBS, then placed on a glass slide. Images were captured on a Leica MZ16D stereo microscope and a Spot RT3 camera. For hatching frequency, eggs were kept on grape plates at 25 °C for 48 h and then scored as hatched or unhatched.

Egg Collection and Scoring. Eggs were scored for presence or absence of eggshell abnormalities, including missing or misshapen protein. For imaging, eggs were rinsed twice with PBS, then placed on a glass slide. Images were captured on a Leica MZ16D stereo microscope and a Spot RT3 camera. For hatching frequency, eggs were kept on grape plates at 25 °C for 48 h and then scored as hatched or unhatched.