Transition from Collisional to Collisionless Regimes in Interpenetrating Plasma Flows on the National Ignition Facility

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

As Published
http://dx.doi.org/10.1103/PhysRevLett.118.185003

Publisher
American Physical Society

Version
Final published version

Accessed
Sat Apr 06 01:42:27 EDT 2019

Citable Link
http://hdl.handle.net/1721.1/109179

Terms of Use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Detailed Terms

MIT Open Access Articles

Transition from Collisional to Collisionless Regimes in Interpenetrating Plasma Flows on the National Ignition Facility

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
A study of the transition from collisional to collisionless plasma flows has been carried out at the National Ignition Facility using high Mach number ($M > 4$) counterstreaming plasmas. In these experiments, CD-CD and CD-CH planar foils separated by $6 \text{–} 10 \text{ mm}$ are irradiated with laser energies of 250 kJ per foil, generating $\sim 1000 \text{ km/s}$ plasma flows. Varying the foil separation distance scales the ion density and average bulk velocity and, therefore, the ion-ion Coulomb mean free path, at the interaction region at the midplane. The characteristics of the flow interaction have been inferred from the neutrons and protons generated by deuteron-deuteron interactions and by x-ray emission from the hot, interpenetrating, and interacting plasmas. A localized burst of neutrons and bright x-ray emission near the midpoint of the counterstreaming flows was observed, suggesting strong heating and the initial stages of shock formation. As the separation of the CD-CH foils increases we observe enhanced neutron production compared to particle-in-cell simulations that include Coulomb collisions, but do not include collective collisionless plasma instabilities. The observed plasma heating and enhanced neutron production is consistent with the initial stages of collisionless shock formation, mediated by the Weibel filamentation instability.

Shocks are ubiquitous in the Universe, triggered by explosive events such as supernovae and gamma-ray bursts [1,2], energetic inflows such as those in accreting compact objects (such as white dwarfs), or the outflows produced by Active Galactic Nuclei [3–5]. The shocks produced in these energetic astrophysical settings are generally collisionless, meaning the Coulomb ion-ion collision mean free path (mfp) \gg the thickness of the shock front or the interaction region. These shocks are thought to be a source of magnetic field generation and amplification [6,7], and particle acceleration to cosmic ray energies [8–12]. Unlike the majority of shocks produced in the laboratory, which result from hydrodynamic (collisional) stagnation, astrophysical shocks rely on collective plasma behavior and instabilities to produce strong fields that can impede interpenetration sufficiently to form a shock. High Mach number ($M > 4$) collisionless shocks mediated by electromagnetic Weibel instabilities have not yet been generated in the laboratory; such experiments would enable the study of collisionless shock microphysics, and their predicted role in magnetic field generation, amplification, and high energy particle acceleration.

With the advent of high energy, high power lasers, the study of high Mach number collisionless plasma interactions became possible in the laboratory [13–16], with a number of experiments observing non-Weibel mediated (electrostatic, etc.) collisionless shocks [17–20]. The key questions related to the formation of Weibel mediated collisionless shocks in a laboratory are (i) what are the required plasma conditions to form a collisionless shock and (ii) what are the shock signatures in terms of fields and particle distributions. It is also important to understand the plasma conditions at the transition from collisional to collisionless flows in a laser experiment, where the
preponderance of experimental work has been done in dense collisional plasma settings. Modern particle-in-cell simulations indicate that Weibel-mediated collisionless shocks can be formed for interpenetration distances $> 200c/\omega_{pi}$ [21], where $\omega_{pi} = (4\pi n_i Z_i^2 e^2/m_i)^{1/2}$ is the ion plasma frequency and c is the speed of light; however, this has not yet been demonstrated experimentally.

Previous experiments [22] at the Omega Laser facility have demonstrated the development of Weibel-type filamentation instabilities [23,24] that both generate a seed magnetic field and amplifies it significantly, a critical step to forming a shock without preexisting background magnetic field [25,26]. The plasma flow conditions were characterized using Thomson scattering (TS) [27]. The measurements indicate that the ion-ion Coulomb collision mean free path length between the carbon ions of two interpenetrating streams, λ_{CC}, is much greater than the interaction scale length μ_{CC} (where μ_{CC} is the thickness of each foil), intra- and inter-stream large angle Coulomb scattering of D ions, and scattering from random electromagnetic fields created by counterstreaming electrons. The TS measurements indicate that 10 mm foil separation, the flow interactions are in a more collisionless regime.

The characteristic time scale for an e folding of the Weibel instability is $(\omega_{pi}v/c)^{-1}$, where v is the flow velocity. It is therefore desirable to perform experiments at higher plasma density (higher ω_{pi}) and higher velocity, such that this time is shorter. This would allow the instability to reach a more developed state, eventually leading to shock formation. This scaling motivated a dedicated set of experiments on the National Ignition Facility (NIF) [29] at Lawrence Livermore National Laboratory. The NIF has 30 times higher laser energy available (compared to Omega, for this experimental configuration), well-characterized neutron diagnostics with neutron time-of-flight measurements along multiple chords, the capability to image self-emitted protons from the interaction region, and a variety of time-integrating x-ray imaging diagnostics. Characteristic parameters are shown in Table I. For NIF experiments, the number of instability e-folding times Γ_{max} (where Γ is the maximum growth rate and t_{max} is the time of peak neutron production) is indeed very large, in the range of a few hundred, allowing the instability to reach a highly developed nonlinear stage due primarily to the factor of 40 increase in density compared to Omega experiments. On the other hand, the collision times are shorter than the duration of the experiment, especially for the shorter distance between the foils, meaning that collisional effects may still have significant influence on the distribution functions. This creates a situation where collisionless and collisional effects are tightly interwoven and both have to be accounted for.

In this Letter, we present the results from the first experiments on the initial stages of collisionless shock formation performed on the NIF. The experiments utilize solid density polystyrene foils (CH) and deuterated polystyrene foils (CD) that can generate 3 MeV protons and 2.45 MeV neutrons via nuclear reactions: $D(d, p)\alpha$ and $D(d, n)\alpha$. These reactions can originate from (i) laser light directly heating the target foils, (ii) beam-beam interactions for counterstreaming D ions, (iii) small and large angle Coulomb scattering of D ions on the counterpropagating C ions, and (iv) scattering from random electromagnetic fields created by counterstreaming flow instabilities. A set of controlled experiments were
performed to distinguish these individual components: single foil experiments to measure the effect of direct laser heating, CD-CH interpenetrating flows to see the contributions from stagnation heating and shock formation, and CD-CD to see the contribution of direct beam-beam interactions. From the counterstreaming CD-CD and CD-CH interpenetrating flows, the measured neutron and proton yields, spectrum, spatial distribution, and x-ray emissions allow us to characterize the interactions and differentiate the primary stagnation mechanisms. The measurements are compared to 2D particle-in-cell simulations of Coulomb ion scattering using the input from a 2D hydrodynamic simulation that modeled the laser-target interaction.

A typical experimental configuration is shown in Fig. 1: a pair of CD-CD or CD-CH foils separated by 6–10 mm. The foils are each irradiated with forty-eight 351 nm laser beams, each delivering 5.2 kJ in a 5 ns square pulse. The beams use continuous phase plates (CPPs) to produce focal spots with a super-Gaussian exponent of 4.3 and a full-width at half-maximum of 1200 μm resulting in an overlapped intensity of 2.8×10^{15} W/cm2.

The self-generated protons and x rays in the interpenetrating interaction region of the flows were imaged for each target configuration to determine the location of yield generation. The images were generated using a 1 mm diameter pinhole located 260 mm from the interaction, with CR39 positioned 1040 mm behind the pinholes backed with a Fuji BAS-SR image plate. The CR39 detects protons and is transparent to the x rays, which are in turn detected by the image plate. An example x-ray image overlaid with contours of the proton image is shown in Fig. 1(b). Even though the x-ray image is dominated by emission near the foil surfaces where the plasma is directly laser heated, the central region where the two plasmas interact also shows considerable brightening in x ray. A peak x-ray signal in the interaction region of 8.1 photostimulated luminescence (PSL) for the 6 mm case, 2.1 PSL for the 8 mm case, and 0.8 PSL for the 10 mm case is observed and is an indication of higher density and temperature in the 6 mm case. Strikingly, the proton emission region is completely dominated by the emission from the central region where the two plasma flows interact. This, in combination with the low single foil neutron yield, indicates the characteristics of neutron and proton measurements provide information about the interacting flows.

Neutron yield measurements integrated over time and angle are shown in Fig. 2. A maximum yield of 5.3×10^{10} was observed for CD foils separated by 6 mm. A single foil CD shot showed a yield of 4.7×10^8, indicating the neutron yield for two foil experiments is dominated by the counterstreaming plasma interaction. When one of the CD foils was replaced with CH, the yield dropped by a factor ~ 8 to 6.3×10^9. A factor of 2 difference in yield between CD-CD and CD-CH is expected if a fully formed strong shock is present, effectively isolating the deuterium to half the

![FIG. 1.](image1)

![FIG. 2.](image2)
experimental volume in the CD-CH case. A factor of 8 yield reduction in the data indicates that the dominant contribution to the yield in the CD-CD case is beam-beam D interactions during interpenetration. However, the finite neutron generation in the CD-CD case indicates that there is either collisional or collisionless heating of the plasma. Without heating of the CD stream there would be no neutron generation as the counterpropagating stream has no deuterons for beam-beam generation. As this experimental case is at much higher density than previous Omega experiments, we cannot definitively conclude that all heating in the CD-CD case is collisionless. In fact, as shown in Table I, the collisional mean free path is on the order of the system size. For this reason, we use collisional simulations to estimate the contribution of collisional processes to ion heating and neutron production.

Some level of ion-ion binary collisions is present due to the high densities achieved on the NIF and may contribute to the interaction between the streams. If Coulomb collisions were negligible in the CD-CH case, and collisionless plasma instabilities did not significantly affect the flows, the streams should have freely interpenetrated without producing any protons or neutrons. If collisions are present but weak, then the CD flow from one foil would be only slightly heated by the small-angle scattering off the carbon ions of the counterpropagating CH flow. As there are no deuterons in the counterpropagating stream, the intrajet $D-D$ collisions would be the only source of the neutrons and due to the minimal heating the total neutron yield would be negligible.

A 2D radiation hydrodynamics simulation using the code HYDRA [30] was completed for the 6 mm separation CD-CD foil experiment and found a neutron yield of 3×10^{11}, roughly a factor of 5 higher than that observed experimentally. The HYDRA simulation is a purely hydrodynamic collisional interaction of the two flows, in which two infinitesimally thin shocks are formed and propagate away from the midpoint, with a shock heated neutron-generating plasma in between. This is an extreme case of the interaction between two highly collisional flows. In our experiment, even the highest density flows corresponding to the 6 mm separation are not sufficiently collisional to be described as a fluid, which is a possible explanation of the difference between the neutron yield prediction from HYDRA and the observed results.

To properly take into account the finite collisional mean free path of our experiments, we have performed collisional simulations with the PIC code LSP [31]. The phase space diagrams from the LSP simulations are shown in Fig. 3. For the 6 mm case the thermalization and neutron production time scales are predicted to be 1–2 ns, as expected when collisional interactions are significant. For the 10 mm foil separation, however, where collisional interactions are weaker, the thermalization takes longer, of order \sim10 ns. Note that the particle phase-space density is low near the $z = 0, v_z = 0$ region of the plot for the 10 mm separation but not for the 6 mm separation case. This again suggests that the 10 mm separation experiments are in a more collisionless regime, whereas the 6 mm separation experiments are rather collisional.

The simulations were initialized using the output of HYDRA runs at 3.5 ns from the start of the laser pulse. Given the uncertainty in the plasma conditions, a series of simulations was completed where the electron density and flow velocity were varied to reproduce the 6 mm CD-CD neutron yield and spectrum. Synthetic neutron time-of-flight (NTOF) data were generated from the simulations using the known detector responses. Thus simulated and experimental NTOF data were compared directly and quantified via a reduced chi-squared significance test to all three NTOF detectors at 5°, 97°, and 139° from the CD target. While the neutron data is a time integrated diagnostic it highly constrains our simulations given that it constrains both the ion thermal velocity width (i.e., effective ion temperature) from the width of the neutron pulse, the flow velocity of the ions from the shift of the neutron pulse, and the ion density from the total yield. By matching the NTOF data with our simulations of the 6 mm CD/CD case we constrained our simulations to agree to the 95% confidence level, which resulted in a constrained flow velocity of $\pm 10\%$ and ion density of $\pm 25\%$. This set of simulations is used to generate uncertainties in the simulated neutron yield for the CD-CH cases shown in Fig. 2. The LSP simulations were run without any electromagnetic fields, which assumes that the plasma expansion is ballistic. We used standard multiple, small-angle scattering (SAS) methods [32,33] for all collisions with electrons. Because of the low collisionality of the plasma and the strong dependence of the neutron cross section on velocity, we have included single, large angle scattering (LAS) events between and within ion species (e.g., D with D, D with C). The LAS algorithm is implemented in a similar way to that of Turrell et al. [34], but with a physically self-consistent transition between SAS and LAS.

The simulated neutron yields are compared to the experimental measurements in Fig. 2. The simulated yield...
is that generated in the central interaction region which does not include the laser heated target surface region. The measured and LSP simulated yields for the 6 mm CD-CD case agree by construction. The spatial distribution of the proton emission is also similar (not shown). Reasonable agreement is observed for the neutron yield in the 10 mm case (Fig. 2). The dominant source of nuclear yield from the D-D reactions is from direct beam-beam binary collisions in the counterstreaming CD-CD flows. As expected by both analytic calculations and simulations, in the CD-CH case, the absence of the counterstreaming deuterons leads to a large reduction of the direct beam-beam yield by a factor of ∼8 for 6 mm separation. The experimentally observed yield is larger than the simulated yield by a factor of ∼6 for the CD-CH experiments. This suggests that there exists another source of scattering and reactions for the deuterons, other than Coulomb collisions; the strong electric and magnetic fields produced by streaming plasma instabilities appear a likely candidate. The discrepancy between the experimental results and collisional simulations increases with the target separation distance, consistent with the collisionless streaming plasma instabilities becoming more dominant (compared to binary ion-ion Coulomb collisions) at larger separations. At 10 mm foil separation, the average particle speed during the interactions near the midplane (z = 0) is higher and the density is lower, and thus collisionless collective plasma interactions are expected to be more important. Unfortunately, it is not possible to simulate both the full size of the experiment and include EM fields due to the computational expense in a PIC simulation. As done previously on Omega, it is possible to perform 3D simulations with EM fields, but only when using periodic boundary conditions to simulate a relatively small grid. However, such a periodic simulation will not be able to capture the 3D expansion of the target, which is necessary to obtain a quantitative neutron yield.

Given the earlier experimental results from Omega and the corresponding PIC simulations [22,28], the collisionless interactions between the flows are expected to be driven by a Weibel-type instability [23,24]. For the current NIF experimental conditions, this instability does not lead to a fully developed collisionless shock. If it had, then the neutron yield for CD-CH would have been half of the CD-CD yield. The data do, however, clearly show enhanced ion scattering and localized electron heating, producing a local maximum in x-ray emission in the midplane area. This is the region where the collisionless plasma instabilities are the strongest. These results suggest we are probing the nonlinear stage of the instability, which is mediating the initial stages of shock formation.

In conclusion, we have produced and characterized high velocity counterstreaming plasma flows relevant for the creation of collisionless shocks on the NIF. The interaction region has been characterized using a suite of particle and x-ray diagnostics and compared to 2D hydrodynamic and PIC simulations. We have found strong evidence for the presence of collective collisionless scattering of the particles in two interpenetrating flows. We have also observed that the relative importance of collisionless scattering compared to collisional scattering increases with increasing target separation: the interactions are significantly collisional at 6 mm separation, largely collisionless at 10 mm separation, and in transition at 8 mm separation. Combining our observations with those of earlier experiments on Omega, [22] we identify the most plausible candidate for the enhanced collisionless collective scattering and stagnation heating to be the filamentation Weibel instability.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and supported by the Laboratory Directed Research and Development Program (LDRD) (15-ERD-065) at LLNL and from the SC-FES High Energy Density Laboratory Plasmas (HEDLP) program. Computing support for this work came from the LLNL Institutional Computing Grand Challenge. F.F. acknowledges support by the Lawrence Fellowship at LLNL and LDRD program at SLAC. The work of G. G. and J. M. was supported in part by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement No. 256973, and by the Engineering and Physical Sciences Research Council (Grants No. EP/M022331/1 and No. EP/N014472/1) of the United Kingdom. Y.S. acknowledges support from JSPS KAKENHI Grant No. JP15H02154. M. C. L. acknowledges support from the Royal Society Newton Fellowship.