Measurement of differential top-quark-pair production cross sections in pp collisions at $s = 7$TeV

<table>
<thead>
<tr>
<th>Citation</th>
<th>Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T. et al. “Measurement of differential top-quark-pair production cross sections in pp collisions at $s = 7$TeV.” The European Physical Journal C 73, no. 3 (March 2013): 2399 © CERN for the benefit of the CMS collaboration 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1140/epjc/s10052-013-2339-4</td>
</tr>
<tr>
<td>Publisher</td>
<td>Springer-Verlag</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sat Dec 29 17:59:45 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/109807</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution 4.0 International License</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by/4.0/</td>
</tr>
</tbody>
</table>
Measurement of differential top-quark-pair production cross sections in pp collisions at $\sqrt{s} = 7$ TeV

The CMS Collaboration*
CERN, Geneva, Switzerland

Abstract Normalised differential top-quark-pair production cross sections are measured in pp collisions at a centre-of-mass energy of 7 TeV at the LHC with the CMS detector using data recorded in 2011 corresponding to an integrated luminosity of 5.0 fb^{-1}. The measurements are performed in the lepton + jets decay channels (e+jets and μ+jets) and the dilepton decay channels (e^+e^-, $\mu^+\mu^-$, and $e^\pm\mu^\mp$). The $t\bar{t}$ differential cross section is measured as a function of kinematic properties of the final-state charged leptons and jets associated to b quarks, as well as those of the top quarks and the $t\bar{t}$ system. The data are compared with several predictions from perturbative QCD calculations up to approximate next-to-next-to-leading-order precision. No significant deviations from the standard model are observed.

1 Introduction

Measurements of top-quark production cross section and properties have played a major role in testing the standard model (SM) and in searches for new physics beyond it. The large top-quark production rates at the Large Hadron Collider (LHC) give access to a new realm of precision measurements. For the first time, the $t\bar{t}$ pair production rate is sufficiently high to perform a detailed and precise measurement of the $t\bar{t}$ production cross section differentially as a function of various kinematic observables in $t\bar{t}$ events [1]. These measurements are crucial to verify the top-quark production mechanism at the LHC energy scale in the context of SM predictions with various levels of perturbative quantum chromodynamics (QCD) approximations. Furthermore, scenarios beyond the SM, for example decays of massive Z-like bosons into top-quark pairs, could be revealed in such measurements, most prominently as resonances in the invariant $t\bar{t}$ mass spectrum [2–4].

Here, measurements of the normalised differential $t\bar{t}$ production cross section in proton–proton (pp) collisions at a centre-of-mass energy \sqrt{s} of 7 TeV with the Compact Muon Solenoid (CMS) detector are presented. These results complement the recent CMS measurements of the $t\bar{t}$ production cross section [5–9]. The analysis makes use of the full set of data recorded in 2011, corresponding to an integrated luminosity of 5.0 ± 0.1 fb^{-1}. The cross section is determined as a function of the kinematic properties of the leptons and of the jets associated to b quarks or antiquarks (b jets) from top-quark decays, of the top quarks themselves, as well as of the $t\bar{t}$ system. The results are compared to several theoretical predictions obtained with MADGRAPH [10], MC@NLO [11], POWHEG [12–14], and to the latest next-to-leading-order (NLO) plus next-to-next-to-leading-logarithm (NNLL) [15] and approximate next-to-next-to-leading-order (NNLO) [16, 17] calculations.

The measurements are performed in several decay channels of the $t\bar{t}$ system, both in the $\ell +$ jets channels ($\ell = e$ or μ), with a single isolated lepton and at least four jets in the final state, and in the dilepton channels, with two oppositely charged leptons (e^+e^-, $\mu^+\mu^-$, $e^\pm\mu^\mp$) and at least two jets. The top-quark-pair candidate events are selected by requiring isolated leptons and jets with high transverse momenta. Backgrounds to $t\bar{t}$ production are suppressed by use of b-tagging techniques. The top-quark kinematic properties are obtained through kinematic fitting and reconstruction algorithms. The normalised differential $t\bar{t}$ production cross section is determined by counting the number of $t\bar{t}$ signal events in each bin of the measurement, correcting for the detector effects and dividing by the measured total cross section. Correlations between the bins of the measurement are taken into account by using regularised unfolding techniques.

The measurement performed here refers to kinematical distributions. To remove systematic uncertainties on the nor-
malisation, the absolute differential cross section is
ormalised to the in-situ measured inclusive cross section. The
inclusive cross section, as obtained in this analysis, is con-
sistent with the results from dedicated CMS measurements
[5–9]. To avoid additional model uncertainties due to the
extrapolation of the measured cross section into experiment-
ally inaccessible phase space regions, the results for directly
measurable quantities, such as the kinematic properties of
leptons and b jets, are reported in a visible phase space. This
phase space is defined as the kinematic region in which all
selected final state objects are produced within the detector
acceptance and are thus measurable experimentally. For top-
quark and t¯t distributions, the measurements are performed
in the full phase space, allowing for comparison with calcula-
tions up to the approximate NNLO precision.

This document is structured as follows. A brief descrip-
tion of the CMS detector is provided in Sect. 2, followed by
details of the event simulation in Sect. 3, and the event selec-
tion and reconstruction in Sect. 4. The estimated systematic
uncertainties on the measurements of the cross section are
described in Sect. 5. The result of the differential cross sec-
tion measurements are presented in Sect. 6, followed by a
summary in Sect. 7.

2 The CMS detector

The central feature of the CMS apparatus is a superconduct-
ing solenoid of 13 m length and 6 m internal diameter, which
provides an axial magnetic field of 3.8 T. Within the field
volume are the silicon pixel and strip trackers, the crystal
electromagnetic calorimeter (ECAL), and the brass/scintil-
lator hadron calorimeter (HCAL). Charged particle trajecto-
ries are measured by the inner tracker, covering 0 < φ < 2π
in azimuth and |η| < 2.5, where the pseudorapidity η is de-
A more detailed description of the CMS detector can be found in Ref. [18].

3 Event simulation and theoretical calculations

Event generators, interfaced with detailed detector simul-
tations, are used to model experimental effects, such as re-
construction and selection efficiencies as well as detector
resolutions. For the simulation of the t¯t signal sample, the
MADGRAPH event generator (v. 5.1.1.0) is used, which
implements the relevant matrix elements up to three ad-
ditional partons. The value of the top-quark mass is fixed
to mt = 172.5 GeV and the proton structure is described
by the parton density functions (PDF) CTEQ6L1 [19]. The
generated events are subsequently processed with PYTHIA
(v. 6.424) [20] for parton showering and hadronisation, and
the MLM prescription [21] is used for the matching of the
jets with parton showers.

Standard-model background samples are simulated with
MADGRAPH, POWHEG (r1380) [22], or PYTHIA, depend-
ing on the process. For the ℓ + jets channels, W- and Z/γ *-
boson production with additional jets (referred to as W + jets
and Z + jets, respectively, in the following), single-top-quark
production (s-, t-, and tW-channel), diboson (WW, WZ, and
ZZ), and QCD multijet events are considered as background
processes and listed according to their importance. For the
dilepton channels, the main background contributions (in
decreasing order of importance) stem from Z + jets, single-
top-quark, W + jets, diboson, and QCD multijet events. The
W + jets and Z + jets samples, including the W/Z + c¯c/bb
processes, are simulated with MADGRAPH with up to four
partons in the final state. POWHEG is used for single-top-
quark production, while PYTHIA is used to simulate diboson
and QCD multijet events. Parton showering and hadronisa-
tion are also simulated with PYTHIA in all the background
samples. The PYTHIA Z2 tune [23] is used to characterise
the underlying event in both the t¯t signal and the back-
ground samples. The CMS detector response is simulated
using GEANT 4 (v. 9.4) [24].

For comparison with the measured distributions, the
events in the simulated samples are normalised to an in-
tegrated luminosity of 5.0 fb−1 according to their predicted
cross sections. The latter are taken from NNLO (W + jets,
Z + jets), NLO + NNLL (single-top-quark s- [25], t- [26], and
tW- [27] channels), NLO (diboson [28]), and leading-
order (LO) (QCD multijet [20]) calculations. Correction
factors described in Sect. 5 are applied where necessary to im-
prove the description of the data by the simulation. The t¯t
simulation sample is normalised to the data to present ex-
pected rates in figures in Sect. 4.

In addition to the MADGRAPH prediction, theoretical
calculations obtained with the NLO generators POWHEG
and MC@NLO (v. 3.41), and the latest NLO + NNLL
[15] and approximate NNLO [16, 17] predictions are com-
pared, when available, to the final results presented in
Sect. 6. The proton structure is described by the PDF sets
CTEQ6M [19] both for POWHEG and MC@NLO, while the
NNLO MSTW2008 [29] PDF set is used for the NLO +
NNLL and for the approximate NNLO calculations. The
events generated with POWHEG and MC@NLO are further
processed with PYTHIA and HERWIG (v. 6.520) [30], respec-
tively, for the subsequent parton showering and hadronisation.
While POWHEG and MC@NLO are formally equivalent
up to the NLO accuracy, they differ in the techniques used
to avoid double counting of radiative corrections that may
arise from interfacing with the parton showering generators.
Furthermore, the parton showering in PYTHIA is based on
a transverse-momentum-ordered evolution scale, whereas in
HERWIG it is angular-ordered.

4 Event reconstruction and selection

The event selection is based on the decay topology of the
top quark, where each top quark decays into a W boson
and a b quark. The \(\ell + \) jets channels refer to events with
only one leptonic W-boson decay, whereas in the dilep-
ton channels each of the two W bosons decays leptonically
(muon or electron). These signatures imply the identifica-
tion of isolated leptons with large transverse momentum \(p_T \),
large missing transverse momentum due to neutrinos from
W-boson decays escaping the detector, and highly energetic
jets. The heavy-quark content of the jets is identified through
b-tagging techniques.

4.1 Lepton and jet reconstruction

Events are reconstructed using a particle-flow technique [31,
32], which combines signals from all sub-detectors to en-
hance the reconstruction performance by identifying indi-
vidual particle candidates in pp collisions. Charged hadrons
from pileup events, i.e. those originating from a vertex other
than the one of the hard interaction, are subtracted event-
by-event. Subsequently, the remaining neutral-hadron pileup
component is subtracted at the level of jet energy correc-
tions [33].

Electron candidates are reconstructed from a combina-
tion of the track momentum at the main interaction ver-
tex, the corresponding energy deposition in the ECAL, and
the energy sum of all bremsstrahlung photons attached to
the track. They are required to have a transverse energy
\(E_T > 30 \) GeV within the pseudorapidity interval \(|\eta| < 2.1\)
for the \(\ell + \) jets channels, while electrons in the dilepton
channels have to fulfil \(E_T > 20 \) GeV and \(|\eta| < 2.4\). As
an additional quality criterion, a relative isolation \(I_{rel} \) is
computed. It is defined by the sum of the transverse momenta
of all neutral and charged reconstructed particle can-
didates inside a cone around the electron in \(\eta - \phi \) space
of \(\Delta R \equiv \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} < 0.4 \) for the \(\ell + \) jets channels and
\(\Delta R < 0.3 \) for the dilepton channels, divided by the \(p_T \)
of the electron. The transverse momentum associated with the
electron is excluded from the sum. A relative isolation of the
electron \(I_{rel} < 0.125 \) is demanded for the \(\ell + \) jets channels
and \(I_{rel} < 0.17 \) for the dilepton channels. In addition, elec-
trons from photon conversions, identified by missing hits in
the silicon tracker, or being close to a second electron track,
are rejected.

Muon candidates are reconstructed by matching the track
information from the silicon tracker and the muon system.
They are required to have \(p_T > 30 \) GeV and \(|\eta| < 2.1\) for the
\(\ell + \) jets channels, while in the dilepton channels the corre-
sponding selections require \(p_T > 20 \) GeV and \(|\eta| < 2.4\). Isolated
muon candidates are selected if they fulfill \(I_{rel} < 0.125 \)
for the \(\ell + \) jets channels and \(I_{rel} < 0.20 \) for the dilepton
channels. To further increase the purity of muons originating
from the primary interaction and to suppress misidentified
muons or muons from decay-in-flight processes, additional
quality criteria, such as a minimal number of hits associated
with the muon track, are required in both the silicon tracker
and the muon system.

Jets are reconstructed by clustering the particle-flow can-
didates [34] using the anti-\(k_T \) clustering algorithm with a dis-
tance parameter of 0.5 [35]. Electrons and muons passing
less stringent selections on lepton kinematic quantities and
isolation compared to the ones mentioned above have been
identified and are excluded from the clustering process. A jet
is selected if it has \(p_T > 30 \) GeV and \(|\eta| < 2.4\) for both
the \(\ell + \) jets and dilepton channels. In addition, jets originat-
ing from b quarks are identified in each decay channel by a
“combined secondary-vertex” (CSV) algorithm [36], which
provides a b-tagging discriminant by combining secondary
vertices and track-based lifetime information. The chosen
working point in the \(\ell + \) jets channels results in an efficiency
for tagging a b jet of about 60 %, while the probability to
misidentify light-flavour jets as b jets (mistag rate) is only
about 1.5 %. In the dilepton channels, the working point is
selected such that the b-tagging efficiency and mistag rate
are about 80–85 % and around 10 %, respectively [36].

The missing transverse energy \(\slashed{E}_T \) is defined as the mag-
nitude of the transverse momentum imbalance \(\slashed{p}_T \), which is
the negative of the vectorial sum of the transverse momenta
of all the particles reconstructed with the particle-flow algo-

4.2 Event selection

The event selection in the \(\ell + \) jets channels proceeds as
follows. In the e + jets channel, events are triggered by
an isolated electron and three or more jets fulfilling trans-
verse momentum thresholds. The trigger efficiency within
the acceptance of this analysis is above 96 %. Events in the
mu + jets channel are triggered by the presence of an isolated
muon fulfilling \(p_T \) thresholds and geometrical acceptance
requirements. In this channel, the trigger efficiency is above
87 %. For the final analysis, only triggered events that have
exactly one isolated lepton (leading lepton) according to the
lepton identification criteria described in Sect. 4.1 are re-
tained. Events with additional muons with \(p_T > 10 \) GeV,
Fig. 1 Basic kinematic distributions after event selection for the $\ell + \text{jets}$ channels. The top left plot shows the multiplicity of the reconstructed b-tagged jets. The multiplicity of the reconstructed jets (top right), the p_T of the selected isolated leptons (bottom left), and the p_T of the reconstructed jets (bottom right) are shown after the b-tagging requirement.

$|\eta| < 2.5$, and relative isolation $I_{\text{rel}} < 0.2$ are rejected. Furthermore, in the $e + \text{jets}$ channel, events are rejected if additional electrons have $E_T > 20$ GeV, $|\eta| < 2.5$, and $I_{\text{rel}} < 0.2$, and form a dielectron mass within 15 GeV of the mass of the Z boson. In the $\mu + \text{jets}$ channel, events are rejected if they contain electron candidates with $E_T > 15$ GeV, $|\eta| < 2.5$, and $I_{\text{rel}} < 0.2$. These lepton vetoes are meant to suppress background events from Z-boson and diboson production. An event must contain at least four reconstructed jets satisfying the criteria mentioned in Sect. 4.1. At least two of them are required to be tagged as b jets in order to suppress the background contribution mainly from $W + \text{jets}$ events. After this selection, the remaining backgrounds are dominantly single-top-quark and top-quark-pair events from other decay channels, i.e. events with missing transverse energy signature. Therefore, no requirement on missing transverse energy is imposed.

In the dilepton channels, at least two isolated leptons of opposite charge are required. These events are triggered using combinations of two leptons fulfilling transverse mo-
Fig. 2 Basic kinematic distributions after event selection for the dilepton channels. The top left plot shows the multiplicity of the reconstructed b-tagged jets. The multiplicity of the reconstructed jets (top right), the p_T of the selected isolated leptons (bottom left), and the p_T of the reconstructed jets (bottom right) are shown after the b-tagging requirement. The $Z/\gamma^* + \text{jets}$ background is determined from data (cf. Sect. 4.2).

The trigger efficiency is greater than 95% in the $\mu^+\mu^-$ channel and greater than 97% in the $\mu^\pm e^\mp$ and e^+e^- channels. For the final analysis, only triggered events passing the lepton identification criteria described above are retained. In events with more than two leptons, only the lepton pair with the highest p_T sum is considered. Events with an invariant mass of the lepton pair smaller than 12 GeV are removed in order to suppress events from heavy-flavour resonance decays. Dilepton events are required to have at least two jets. At least one of the jets is required to be identified as a b jet to reduce the background contribution. In addition, backgrounds from $Z + \text{jets}$ processes in the $\mu^+\mu^-$ and e^+e^- channels are further suppressed by requiring the dilepton invariant mass to be outside a Z-boson mass window of 91 ± 15 GeV and E_T to be larger than 30 GeV.

Basic distributions of the $\ell + \text{jets}$ and dilepton event samples are shown in Figs. 1 and 2, respectively, for different steps of the selection. The data are well described by the simulation. It has been verified that the result of the
In the $\ell +$ jets channels, the main contributions to the background arise from $W +$ jets and QCD multijet events, which are efficiently suppressed after the b-tagging requirement. After performing the full event selection, including the kinematic top-quark-pair reconstruction described in Sect. 4.3, 9076 events are found in the $e +$ jets channel and 10766 events in the $\mu +$ jets channel. In both decay channels, the $\ell +$ jets signal contribution to the final event sample is about 80%. The remaining fraction of events contains around 13% $t\bar{t}$ decays other than the $\ell +$ jets channels, including $t\bar{t}$ decays into r leptons originating from the primary interaction, about 4% single-top-quark events, around 3% $W +$ jets events, and negligible fractions of $Z +$ jets, diboson, and QCD multijet events. The background contributions are all estimated from simulation, normalised as described in Sect. 3 and subtracted from the data in each bin of the measurement.

In the dilepton channels, after performing the full event selection, including the kinematic top-quark-pair reconstruction (cf. Sect. 4.3), 2632 events are found in the e^+e^- channels, and 2632 events are found in the e^+e^- channels.
Fig. 4 Distribution of top-quark and $t\bar{t}$ quantities as obtained from the kinematic reconstruction in the dilepton channels. The left plots show the distributions for the top quarks or antiquarks; the right plots show the $t\bar{t}$ system. The top row shows the transverse momenta, and the bottom row shows the rapidities. The $Z/\gamma^* + \text{jets}$ background is determined from data (cf. Sect. 4.2).

channel, 3014 in the $\mu^+\mu^-$ channel, and 7498 in the μ^+e^- channel. Only $t\bar{t}$ events with two leptons (electrons or muons) in the final state are considered as signal and constitute about 70–80 % of the final event sample, depending on the decay channel. All other $t\bar{t}$ events, specifically those originating from decays via τ leptons, are considered as background and amount to 12–14 % of the final event sample. Dominant backgrounds to the e^+e^- and $\mu^+\mu^-$ channels originate from $Z + \text{jets}$ processes. Their contribution is estimated from data following the procedure described in Ref. [38]. The background normalisation is determined using the number of events inside the Z-peak region (removed from the candidate sample), and a correction needed for non-$Z + \text{jets}$ backgrounds in this control region is derived from the μ^+e^- channel. The fraction of $Z + \text{jets}$ events is found to be around 13 %. Other sources of background, including single-top-quark production and diboson events, are estimated from simulation and found to be about 6 %. The contribution arising from misidentified or genuine leptons within jets is estimated from data using like-sign events in a
4.3 Kinematic top-quark-pair reconstruction

For both the $\ell + \text{jets}$ and dilepton channels, the kinematic properties of the top-quark pair are determined from the four-momenta of all final-state objects by means of kinematic reconstruction algorithms.

In the $\ell + \text{jets}$ channels, a constrained kinematic fitting algorithm is applied [39]. In the fit, the four-momenta of the selected lepton, up to five leading jets, and the p_T representing the transverse momentum of the neutrino, are varied according to their resolutions. The longitudinal component of the neutrino is treated as a free parameter. Moreover, the fit is constrained to reconstruct two W bosons, each with a mass of 80.4 GeV, and top quark and antiquark with identical masses. In events with several combinatorial solutions, only the one with the minimum χ^2 of the fit is accepted.

In the dilepton channels, an alternative kinematic reconstruction method is used [40]. In these channels, due to the presence of two neutrinos, the kinematic reconstruction is underconstrained, even after imposing a transverse-momentum balance of the two neutrinos, a W-boson invariant mass of 80.4 GeV, and equality of the top-quark and antiquark masses. The top-quark mass can be reconstructed in a broad mass range due to detector resolution effects. To account for this, the top-quark mass for each lepton-jet combination is assumed between 100 GeV and 300 GeV in steps of 1 GeV. In the case that an event produces more than one physical solution, those using two b-tagged jets are preferred to the ones using one b-tagged jet, and solutions using one b-tagged jets are preferred to those using no b-tagged jets. After this selection, if an event has more than one solution with the preferred b-tagging, these are ranked according to how the neutrino energies match with a simulated neutrino energy spectrum, and the highest ranked one is chosen.

For both decay channels, the kinematic reconstruction yields no physical solution for about 11% of the events. These events are excluded from further analysis. The simulation provides a good description of the data before and after this requirement.

Distributions of the top-quark or antiquark and $t\bar{t}$ kinematic observables (p_T^{ℓ}, y^{ℓ}, p_T^{ν}, and y^{ν}, where y is the rapidity defined as $y = \frac{1}{2} \cdot \ln[(E + p_z)/(E - p_z)]$, with E and p_z denoting the particle energy and the momentum along the anticlockwise-beam axis, respectively) as obtained from the kinematic reconstruction, are presented in Fig. 3 for the $\ell + \text{jets}$ event sample and in Fig. 4 for the dilepton event sample. In general, the data are well described by the simulation within uncertainties. As in Figs. 1 and 2, the final results are not affected by the small remaining differences in normalisation between data and simulation. For both channels, the measured p_T distributions show a trend of being shifted to lower transverse momenta compared to the simulated distributions.

5 Systematic uncertainties

Systematic uncertainties on the measurement arise from detector effects as well as from theoretical uncertainties. Each systematic uncertainty is investigated separately, and determined individually in each bin of the measurement, by variation of the corresponding efficiency, resolution, or scale within its uncertainty. Correction factors, subsequently referred to as scale factors, are applied where necessary to improve the description of the data by the simulation. For each variation, the measured normalised differential cross section is recalculated, and the difference of the varied result to the nominal result in each bin is taken as the systematic uncertainty. The overall uncertainty on the measurement is then derived by adding the individual contributions in quadrature. The dominant uncertainties on the normalised differential cross section originate from the lepton selection, the b tagging, and from model uncertainties. A summary of the typical systematic uncertainties of the normalised differential cross section, obtained by averaging over all quantities and bins, is given in Table 1 and a detailed description is given in Sects. 5.1 and 5.2.

<table>
<thead>
<tr>
<th>Source</th>
<th>Systematic uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger efficiency</td>
<td>0.5</td>
</tr>
<tr>
<td>Lepton selection</td>
<td>0.5</td>
</tr>
<tr>
<td>Jet energy scale</td>
<td>1.0</td>
</tr>
<tr>
<td>Jet energy resolution</td>
<td>0.5</td>
</tr>
<tr>
<td>Background</td>
<td>3.5</td>
</tr>
<tr>
<td>b tagging</td>
<td>1.0</td>
</tr>
<tr>
<td>Kin. reconstruction</td>
<td>–</td>
</tr>
<tr>
<td>Pileup</td>
<td>0.5</td>
</tr>
<tr>
<td>Fact./renorm. scale</td>
<td>2.0</td>
</tr>
<tr>
<td>ME/PS threshold</td>
<td>2.0</td>
</tr>
<tr>
<td>Hadronisation</td>
<td>2.0</td>
</tr>
<tr>
<td>Top-quark mass</td>
<td>0.5</td>
</tr>
<tr>
<td>PDF choice</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Table 1 Breakdown of typical systematic uncertainties for the normalised differential cross section in the $\ell + \text{jets}$ and dilepton channels. The background uncertainty for the $\ell + \text{jets}$ channels includes normalisation uncertainties as well as uncertainties due to variations of the kinematic scales in W/Z-boson events.
5.1 Experimental uncertainties

The efficiency of the single-muon trigger in $\mu + \text{jets}$ events is determined using the “tag-and-probe” method [41] with Z-boson event samples. A dependence on the pseudorapidity of the muon of a few percent is observed and scale factors are derived. In order to determine the efficiency of the electron–tijet trigger in $\ell + \text{jets}$ events, the tag-and-probe method is also applied to the electron branch, while independent control triggers are used for the hadronic part. Good agreement is observed between data and simulation, and scale factors very close to unity are applied. The lepton identification and isolation efficiencies for the $\ell + \text{jets}$ channels obtained with the tag-and-probe method agree well between data and simulation, so that corrections very close or equal to unity are applied. The systematic uncertainties are determined by shape-dependent variations of trigger and selection efficiencies within their uncertainties. Lepton trigger efficiencies in the dilepton channels are measured using triggers that are only weakly correlated to the dilepton triggers. The lepton identification and isolation uncertainties in the dilepton channels are also determined using the tag-and-probe method, and are found to be described very well by the simulation for both electrons and muons. The overall difference between data and simulation in bins of pseudorapidity and transverse momentum is estimated to be less than 2 % for electrons, while scale factors for muons are found to be close to unity.

To estimate the uncertainty on the jet energy scale, the reconstructed jet energy is varied as a function of the transverse momentum and the pseudorapidity of the jet (typically by a few percent) [34]. The uncertainty on the jet energy resolution (JER) is determined by variation of the simulated JER up and down by about $\pm 6 \%, \pm 9 \%$, and $\pm 20 \%$, for the pseudorapidity regions $|\eta| < 1.7, 1.7 < |\eta| < 2.3$, and $|\eta| > 2.3$, respectively [34].

The uncertainty due to background normalisation is determined by variation of the background yields. For the $\ell + \text{jets}$ channels, the background normalisation is varied by $\pm 30 \%$ for the single-top-quark and diboson samples, and by $\pm 50 \%$ for the QCD samples [5, 6]. For the W/Z-boson samples, this uncertainty is covered by variations of the kinematic scales of the event process (renormalisation and factorisation scales and jet–parton matching), as described in Sect. 5.2. In the e^+e^- and $\mu^+\mu^-$ channels, the dominant background from $Z + \text{jets}$ processes as determined from data (cf. Sect. 4) is varied in normalisation by $\pm 30 \%$. In addition, variations of the background contributions from single-top-quark and diboson events up and down by $\pm 30 \%$ are performed [9, 42].

The uncertainty on the b-tagging efficiency is determined by dividing the b-jet distributions for transverse momentum and pseudorapidity into two bins at the median of the respective distributions. These are $p_T = 65 \text{ GeV}$ and $|\eta| = 0.7$ for the $\ell + \text{jets}$ and $p_T = 65 \text{ GeV}$ and $|\eta| = 0.75$ for the dilepton channels. The b-tagging scale factors for the b jets in the first bin are scaled up by half of the uncertainties quoted in Ref. [36], while those in the second bin are scaled down and vice versa, so that a maximum variation is assumed and the difference between the scale factors in the two bins amounts to the full uncertainty. The variations are performed separately for the transverse-momentum and pseudorapidity distributions.

The kinematic reconstruction of the top quarks is generally found to be very well described by the simulation, and the resulting uncertainties are small. In the case of the $\ell + \text{jets}$ analysis, the uncertainty of the kinematic fit is included in the variations of jet energy scales and resolutions. In the dilepton analysis, the bin-to-bin uncertainty is determined from the small remaining difference between the simulation and the data.

The pileup model estimates the mean number of additional pp interactions to be about 9.5 events for the analysed data. This estimate is based on the total inelastic proton–proton cross section, which is determined to be 73.5 mb [43]. The systematic uncertainty is determined by varying this cross section within its uncertainty of $\pm 8 \%$.

5.2 Model uncertainties

The impact of theoretical assumptions on the measurement is determined by repeating the analysis, replacing the standard MADGRAPH signal simulation by dedicated simulation samples, as described below.

The uncertainty on the modeling of the hard-production process is assessed by varying the renormalisation and factorisation scale in the MADGRAPH signal samples up and down by a factor of two with respect to its nominal value, equal to the Q of the hard process ($Q^2 = m_t^2 + \Sigma p_T^2$). Furthermore, the effect of additional jet production in MADGRAPH is studied by varying the threshold between jet production at the matrix-element level and via parton showering up and down by a factor of two with respect to the nominal value of 20 GeV. In the $\ell + \text{jets}$ channels, variations of the renormalisation and factorisation scale are also applied to single-top-quark events to determine a shape uncertainty for this background contribution. Additionally, both kinematic scales are varied for W- and Z-boson background events to associate a shape and background normalisation uncertainty to these samples. Each type of variation is applied simultaneously for the W- and Z-boson samples.

The uncertainty due to the hadronisation model is determined by comparing samples simulated with POWHEG and MC@NLO using PYTHIA and HERWIG, respectively, for hadronisation. The dependence of the measurement on the top-quark mass is estimated from dedicated MADGRAPH simulation samples in which the top-quark mass is varied.
with respect to the value used for the default simulation. The resulting variations are scaled linearly according to the present world average uncertainty of 0.9 GeV. The effect of the uncertainty from parton density functions on the measurement is assessed by reweighting the sample of simulated t\bar{t} signal events. For this reweighting, the minimum and maximum variations with respect to the nominal value is obtained by following the PDF4LHC prescription [44] using the NLO PDF sets CT10 [45], MSTW2008NLO, and NNPDF2.1 [46].

6 Normalised differential cross section

The normalised cross section in each bin \(i \) of each observable \(X \) is determined through the relation:

\[
\frac{1}{\sigma} \frac{d\sigma_i}{dX} = \frac{1}{\sigma} \frac{x_i}{\Delta X L} \tag{1}
\]

In each bin of the measurement, \(x_i \) represents the number of signal events in data determined after background subtraction and corrected for detector efficiencies, acceptances, and migrations, as described below. The normalised differential cross section is then derived by scaling to the integrated luminosity \(L \) and by dividing the corrected number of events by the width \(\Delta X \) of the bin and by the measured total cross section \(\sigma \) in the same phase space. Due to the normalisation, those systematic uncertainties that are correlated across all bins of the measurement, and therefore only affect the normalisation, cancel out.

Effects from trigger and detector efficiencies and resolutions, leading to the migration of events across bin boundaries and statistical correlations among neighbouring bins, are corrected by using a regularised unfolding method [47, 50]. For each measured distribution, a response matrix that accounts for migrations and efficiencies is calculated from the simulated MADGRAPH t\bar{t} signal sample. The generalised inverse of the response matrix is used to obtain the unfolded distribution from the measured distribution by applying a \(\chi^2 \) technique. To avoid non-physical fluctuations, a smoothing prescription (regularisation) is applied. The regularisation level is determined individually for each distribution using the averaged global correlation method [49]. To keep the bin-to-bin migrations small, the width of the bins of the measurement are chosen according to their purity and stability. For a certain bin \(i \), the number of particles generated and correctly reconstructed \(N_{i, \text{gen}}^{\text{rec}} \) is determined. The purity \(p_i \) is then this number divided by the total number of reconstructed particles in the same bin \(N_{i, \text{rec}}^{\text{rec}} \):

\[
p_i = \frac{N_{i, \text{gen}}^{\text{rec}}}{N_{i, \text{rec}}^{\text{rec}}}.
\]

Similarly, the stability \(s_i \) is defined as that number scaled to the total number of generated particles in the particular bin \(N_{i, \text{gen}}^{\text{gen}} \), yielding \(s_i = \frac{N_{i, \text{gen}}^{\text{rec}}}{N_{i, \text{gen}}^{\text{gen}}} \). In this analysis, the purity and stability of the bins are typically 50% or larger. The performance of the unfolding procedure is tested for a possible bias due to the choice of the input model (the t\bar{t} MADGRAPH signal simulation). It has been verified that, by either reweighting the signal simulation or injecting a resonant t\bar{t} signal into the signal simulation, the unfolding procedure still reproduces the results correctly when using the default MADGRAPH t\bar{t} signal simulation to account for migrations and efficiencies.

The analysis proceeds by measuring the normalised differential cross section in the \(\ell + \text{ jets} \) channels and dilepton channels. For each kinematic distribution, the event yields in the separate channels are added up, the background is subtracted, and the unfolding is performed. As a cross-check, it has been verified that the measurements in the individual channels are in agreement with each other within the uncertainties.

The systematic uncertainties in each bin are assessed from the variations of the combined cross sections. This means that the full analysis is repeated for every systematic variation and the difference with respect to the nominal combined value is taken as the systematic uncertainty for each bin and each measured observable. By using this method, the possible correlations of the systematic uncertainties between the different channels and bins are taken into account.

The normalised differential t\bar{t} cross section \(1/\sigma \cdot d\sigma /dX \) is determined as a function of the kinematic properties of the leading leptons, the lepton pair, the b jets, the top quarks, and the top-quark pair, and presented in the following sections. In order to avoid additional model uncertainties due to the extrapolation of the measurement outside experimentally well-described phase space regions, the normalised differential cross sections for the measured leptons and b jets are determined in a visible phase space defined by the kinematic and geometrical acceptance of the final state leptons and jets. In contrast, the top-quark and the top-quark-pair quantities are presented in the full phase space in order to allow for comparisons with recent QCD calculations up to approximate NNLO precision. To facilitate comparison with theory curves independently of the binning, a horizontal bin-centre correction is applied. In each bin, the measured data points are presented at the horizontal position in the bin where the predicted bin-averaged cross section equals the differential cross section according to the MADGRAPH calculation (cf. [50]). The measurement is compared to the predictions from MADGRAPH, POWHEG, and MC@NLO. For the latter, uncertainty bands corresponding to the PDF (following the PDF4LHC prescription [44]), the top-quark mass, and renormalisation and factorisation scale variations are also given. The top-quark and t\bar{t} results are also compared to the latest approximate NNLO [16, 17] and NLO + NNLL [15] predictions, respectively. All measured normalised differential cross section values, including bin boundaries and...
centres, are available in tabular form in the Supplemental Material.

6.1 Lepton and b-jet differential cross sections

For the $\ell + $ jets channels, the normalised differential $t\bar{t}$ cross section as a function of the lepton and b-jet kinematic properties is defined at the particle level for the visible phase space where the lepton from the W-boson decay has a pseudorapidity $|\eta^\ell| < 2.1$ and a transverse momentum $p_T^\ell > 30$ GeV, and at least four jets with $|\eta| < 2.4$ and $p_T > 30$ GeV, out of which two are b jets. A jet is defined at the particle level as a b jet if it contains the decay products of a B hadron. For this analysis, the two highest transverse momentum b jets originating from different B hadrons are selected.

In Fig. 5, the normalised differential cross section is presented as a function of the lepton transverse momentum p_T^ℓ and pseudorapidity η^ℓ. In Fig. 6, the distributions for the transverse momentum of the b jets, p_T^b, and their pseudo-

![Fig. 5](image1.png)

Fig. 5 Normalised differential $t\bar{t}$ production cross section in the $\ell + $ jets channels as a function of the p_T^ℓ (top) and η^ℓ (bottom) of the lepton. The superscript ‘ℓ’ refers to both ℓ^+ and ℓ^-. The inner (outer) error bars indicate the statistical (combined statistical and systematic) uncertainty. The measurements are compared to predictions from MADGRAPH, POWHEG, and MC@NLO. The MADGRAPH prediction is shown both as a curve and as a binned histogram.

![Fig. 6](image2.png)

Fig. 6 Normalised differential $t\bar{t}$ production cross section in the $\ell + $ jets channels as a function of the p_T^b (top) and η^b (bottom) of the b jets. The superscript ‘b’ refers to both b and bb jets. The inner (outer) error bars indicate the statistical (combined statistical and systematic) uncertainty. The measurements are compared to predictions from MADGRAPH, POWHEG, and MC@NLO. The MADGRAPH prediction is shown both as a curve and as a binned histogram.
Fig. 7 Normalised differential $\bar{t}t$ production cross section in the dilepton channels as a function of the p_T^{ℓ} (top left) and η^ℓ (top right) of the leptons, and the $p_T^{\ell+\ell^-}$ (bottom left), and $m^{\ell+\ell^-}$ (bottom right) of the lepton pair. The superscript ‘ℓ’ refers to both ℓ^+ and ℓ^-. The inner (outer) error bars indicate the statistical (combined statistical and systematic) uncertainty. The measurements are compared to predictions from MADGRAPH, POWHEG, and MC@NLO. The MADGRAPH prediction is shown both as a curve and as a binned histogram

rapidity, η^b, are shown. Also shown are predictions from MADGRAPH, POWHEG, and MC@NLO. Good agreement is observed between the data and the theoretical predictions within experimental uncertainties.

For the dilepton channels, the normalised $\bar{t}t$ differential cross section as a function of the lepton and b jet kinematic properties is defined at the particle level for the visible phase space where the leptons have $|\eta^\ell| < 2.4$ and $p_T^\ell > 20$ GeV, and the b jets from the top-quark decays both lie within the range $|\eta| < 2.4$ and $p_T > 30$ GeV. The b jet at the particle level is defined as described above for the $\ell +$ jets analysis.

In Fig. 7, the normalised differential cross section for the following lepton and lepton-pair observables are presented: the transverse momentum of the leptons p_T^ℓ, the pseudorapidity η^ℓ of the leptons, the transverse momentum of the lepton pair $p_T^{\ell+\ell^-}$, and the invariant mass of the lepton pair $m^{\ell+\ell^-}$. The distributions for the transverse momentum of the b jets, p_T^b, and their pseudorapidity, η^b, are shown in Fig. 8. Predictions from MADGRAPH, POWHEG, and MC@NLO are also shown. Good agreement is observed between data and theoretical predictions within experimental uncertainties. The MC@NLO and POWHEG predictions,
Fig. 8 Normalised differential $t\bar{t}$ production cross section in the dilepton channels as a function of the p_T^ℓ (top) and η^ℓ (bottom) of the b jets. The superscript ‘b’ refers to both b and $b\bar{b}$ jets. The inner (outer) error bars indicate the statistical (combined statistical and systematic) uncertainty. The measurements are compared to predictions from MADGRAPH, POWHEG, and MC@NLO. The MADGRAPH prediction is shown both as a curve and as a binned histogram which take into account $t\bar{t}$ spin correlations, suggest a better description of the lepton-pair observables in those bins in which there exists some discrepancy between the different generators.

6.2 Top-quark and $t\bar{t}$ differential cross sections

The normalised differential $t\bar{t}$ cross section as a function of the kinematic properties of the top quarks and the top-quark pair is presented at parton level and extrapolated to the full phase space using the MADGRAPH prediction for both the $\ell +$ jets and the dilepton channels.

In Figs. 9 and 10, the distributions for the top-quark and the top-quark-pair observables in the $\ell +$ jets channels and the dilepton channels are presented. Those are the transverse momentum p_T^q, the rapidity y^q, and the invariant mass $m^{q\bar{q}}$ of the top quark and antiquark, and the transverse momentum p_T^b, the rapidity y^b, and the invariant mass $m^{b\bar{b}}$ of the top-quark pair. Also shown are predictions from MADGRAPH, POWHEG, and MC@NLO. In addition, the top-quark results are compared to the approximate NNLO calculations from Refs. [16, 17], while the $m^{b\bar{b}}$ distribution is compared to the NLO + NNLL prediction in Ref. [15].

For both $\ell +$ jets and dilepton channels, good agreement is observed between data and theoretical predictions within experimental uncertainties. Among the various predictions, the approximate NNLO calculation provides a better description of the data, as it predicts a slightly softer top-quark transverse momentum spectrum than the other three predictions.

7 Summary

First measurements of normalised differential top-quark-pair production cross sections in pp collisions at $\sqrt{s} = 7$ TeV with the CMS detector are presented. The measurements are performed in the $\ell +$ jets ($e +$ jets and $\mu +$ jets) and the dilepton ($e^+e^-, \mu^+\mu^-$, and $\mu^\pm e^\mp$) $t\bar{t}$ decay channels. The normalised $t\bar{t}$ cross section is measured as a function of the transverse momentum, (pseudo)rapidity, and invariant mass of the final-state leptons and b jets in the visible phase space, and of the top quarks and $t\bar{t}$ system in the full phase space. The measurements among the different decay channels are in agreement with each other and with standard model predictions up to approximate next-to-next-to-leading-order precision. The prediction at approximate NNLO precision is found to give a particularly good description of the top-quark transverse momentum.

Acknowledgements We thank Nikolaos Kidonakis for providing the approximate NNLO calculations and for fruitful discussions, and Li Lin Yang for providing the NLO + NNLL calculation. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: the Austrian Federal Ministry of Science and Research; the Belgian Fonds de la Recherche Scientifique, and Fonds voor Wetenschappelijk Onderzoek; the Brazilian Funding Agencies (CNPq, CAPES, FAPERJ,
Fig. 9 Normalised differential $\bar{t}t$ production cross section in the $\ell +$ jets channels as a function of the p_{T}^{ℓ} (top left) and y^{ℓ} (top right) of the top quarks, and the $p_{T}^{\bar{t}}$ (middle left), $y^{\bar{t}}$ (middle right), and $m^{\bar{t}t}$ (bottom) of the top-quark pairs. The superscript ‘t’ refers to both top quarks and antiquarks. The inner (outer) error bars indicate the statistical (combined statistical and systematic) uncertainty. The measurements are compared to predictions from MADGRAPH, POWHEG, and MC@NLO, and to NLO + NNLL [15] and approximate NNLO [16, 17] calculations, when available. The MADGRAPH prediction is shown both as a curve and as a binned histogram.
Fig. 10 Normalised differential $\bar{t}t$ production cross section in the dilepton channels as a function of the p_{t}^{ℓ} (top left) and y^{ℓ} (top right) of the top quarks, and the $p_{t}^{\ell_2}$ (middle left), y^{ℓ_2} (middle right), and m^{ℓ_2} (bottom) of the top-quark pairs. The superscript ‘t’ refers to both top quarks and antiquarks. The inner (outer) error bars indicate the statistical (combined statistical and systematic) uncertainty. The measurements are compared to predictions from MADGRAPH, POWHEG, and MC@NLO, and to NLO + NNLL [15] and approximate NNLO [16, 17] calculations, when available. The MADGRAPH prediction is shown both as a curve and as a binned histogram.
and FAPESP); the Bulgarian Ministry of Education, Youth and Science; CERN; the Chinese Academy of Sciences, Ministry of Science and Technology, and National Natural Science Foundation of China; the Colombian Funding Agency (COLCIENCIAS); the Croatian Ministry of Science, Education and Sport; the Research Promotion Foundation, Cyprus; the Ministry of Education and Research, Recurrent financing contract SP0690030s09 and European Regional Development Fund, Estonia; the Academy of Finland, Finnish Ministry of Education and Culture, and Helsinki Institute of Physics; the Institut National de Physique Nucléaire et de Physique des Particules/CNRS; and Commissariat à l’Énergie Atomique et aux Énergies Alternatives/CEA, France; the Bundesministerium für Bildung und Forschung, Deutsche Forschungsgemeinschaft, and Helmholtz-Gemeinschaft Deutscher Forschungszentren, Germany; the General Secretariat for Research and Technology, Greece; the National Scientific Research Foundation, and National Office for Research and Technology, Hungary; the Department of Atomic Energy and the Department of Science and Technology, India; the Institute for Studies in Theoretical Physics and Mathematics, Iran; the Science Foundation, Ireland; the Istituto Nazionale di Fisica Nucleare, Italy; the Korean Ministry of Education, Science and Technology and the World Class University program of NRF, Korea; the Lithuanian Academy of Sciences; the Mexican Funding Agencies (CINVESTAV, CONACYT, SEP, and UASLP-FAI); the Ministry of Science and Innovation, New Zealand; the Pakistani Atomic Energy Commission; the Ministry of Science and Higher Education and the National Science Centre, Poland; the Fundação para a Ciência e a Tecnologia, Portugal; IINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); the Ministry of Education and Science of the Russian Federation, the Federal Agency of Atomic Energy of the Russian Federation, Russian Academy of Sciences, and the Russian Foundation for Basic Research; the Ministry of Science and Technological Development of Serbia; the Secretaría de Estado de Investigación, Desarrollo e Innovación and Programa Consolider-Ingenio 2010, Spain; the Swiss Funding Agencies (ETH Board, ETH Zurich, PSI, SNF, UniZH, Canton Zurich, and SER); the National Science Council, Taipei; the Thailand Center of Excellence in Physics, the Institute for the Promotion of Teaching Science and Technology and National Electronics and Computer Technology Center; the Scientific and Technical Research Council of Turkey, and Turkish Atomic Energy Authority; the Science and Technology Facilities Council, UK; the US Department of Energy, and the US National Science Foundation.

Individuals have received support from the Marie-Curie programmme and the European Research Council (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentchap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Turin); and the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
S. Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria

INFN Sezione di Torinoa, Università di Torinob, Università del Piemonte Orientale (Novara)c, Torino, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, C. Biinoa, N. Cartigliaa, M. Costaa,b, N. Demariaa, C. Mariottia,c, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha,c, M.M. Obertinoa,c, N. Pastronea, M. Pelliccionia, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa, A. Vilela Pereiraa

INFN Sezione di Triestea, Università di Triesteb, Trieste, Italy
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, M. Maronea,b,5, D. Montaninoa,b,5, A. Penzoa, A. Schizzia,b

Kangwon National University, Chunchon, Korea
S.G. Heo, T.Y. Kim, S.K. Nam

Kyungpook National University, Daegu, Korea

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, Z.J. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, T.J. Kim, K.S. Lee, D.H. Moon, S.K. Park

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, C. Park, I.C. Park, S. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea

Vilnius University, Vilnius, Lithuania
M.J. Bilinskas, I. Grigelionis, M. Janulis, A. Juodagalvis

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
H.A. Salazar Ibarra

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
E. Casimiro Linares, A. Morelos Pineda, M.A. Reyes-Santos

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
A.J. Bell, P.H. Butler, R. Doesburg, S. Reucroft, H. Silverwood

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

National Centre for Nuclear Research, Swierk, Poland

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Ćwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
Wayne State University, Detroit, USA
S. Gollapinni, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, A. Sakharov

University of Wisconsin, Madison, USA

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
3: Also at Universidade Federal do ABC, Santo Andre, Brazil
4: Also at California Institute of Technology, Pasadena, USA
5: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
6: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
7: Also at Suez Canal University, Suez, Egypt
8: Also at Zewail City of Science and Technology, Zewail, Egypt
9: Also at Cairo University, Cairo, Egypt
10: Also at Fayoum University, El-Fayoum, Egypt
11: Also at British University in Egypt, Cairo, Egypt
12: Also at Ain Shams University, Cairo, Egypt
13: Also at National Centre for Nuclear Research, Swierk, Poland
14: Also at Université de Haute-Alsace, Mulhouse, France
15: Also at Moscow State University, Moscow, Russia
16: Also at Brandenburg University of Technology, Cottbus, Germany
17: Also at The University of Kansas, Lawrence, USA
18: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
19: Also at Eötvös Loránd University, Budapest, Hungary
20: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
21: Also at University of Visva-Bharati, Santiniketan, India
22: Also at Sharif University of Technology, Tehran, Iran
23: Also at Isfahan University of Technology, Isfahan, Iran
24: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
25: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
26: Also at Università della Basilicata, Potenza, Italy
27: Also at Università degli Studi Guglielmo Marconi, Roma, Italy
28: Also at Università degli Studi di Siena, Siena, Italy
29: Also at University of Bucharest, Faculty of Physics, Bucharest-Magurele, Romania
30: Also at Faculty of Physics of University of Belgrade, Belgrade, Serbia
31: Also at University of California, Los Angeles, Los Angeles, USA
32: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
33: Also at INFN Sezione di Roma; Università di Roma, Roma, Italy
34: Also at University of Athens, Athens, Greece
35: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
36: Also at Paul Scherrer Institut, Villigen, Switzerland
37: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
38: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
39: Also at Gaziosmanpasa University, Tokat, Turkey
40: Also at Adiyaman University, Adiyaman, Turkey
41: Also at Izmir Institute of Technology, Izmir, Turkey
42: Also at The University of Iowa, Iowa City, USA
43: Also at Mersin University, Mersin, Turkey
44: Also at Ozyegin University, Istanbul, Turkey
45: Also at Kafkas University, Kars, Turkey
46: Also at Suleyman Demirel University, Isparta, Turkey
47: Also at Ege University, Izmir, Turkey
48: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
49: Also at INFN Sezione di Perugia; Università di Perugia, Perugia, Italy
50: Also at University of Sydney, Sydney, Australia
51: Also at Utah Valley University, Orem, USA
52: Also at Institute for Nuclear Research, Moscow, Russia
53: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
54: Also at Argonne National Laboratory, Argonne, USA
55: Also at Erzincan University, Erzincan, Turkey
56: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
57: Also at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary
58: Also at Kyungpook National University, Daegu, Korea