Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
LETTER TO THE EDITOR

Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences

LAHIRU S. WIJEDASA1,2,3,*, JYRKI JAUHIAINEN4, MARI KÖNÖNEN4, MAIJA LAMPELA4, HARRI VASANDER4, MARIE-CLAIRE LEBLANC5, STEPHANIE EVERS6,7,8, THOMAS E. L. SMITH6, CATHERINE M. YULE7,10, HELENA VARKKEY7,11, MASSIMO LUPASCU12, FAIZAL PARISH13, IAN SINGLETON14, GOPALASAMY R. CLEMENTS3,6,10,15,16, SHEEMA ABDUL AZIZ3,6,16, MARK E. HARRISON17,18, SUSAN CHEYNE17, GUSTI Z. ANSHARI19, ERIK MEIJHAARD10,21, JENNY E. GOLDSTEIN22, SUSAN WALDRON23, KRISTELL HERGOUALC’H24, RENE DOMMAIN25, STEVE FROLKING26, CHRISTOPHER D. EVANS27, MARY ROSE C. POSA3, PAUL H. GLASER28, NYOMAN SURYADIPUTRA29, REZA LUBIS29, TRULY SANTIKA21, RORY PADFIELD7,30,31, SOFYAN KURNIAITO24,32, PANUT HADISISWOYO33, TECK WYN LIM34, SUSAN E. PAGE18, VINCENT GAUCI35, PETER J. VAN DER MEER36, HELEN BUCKLAND37, FABIEN GARNIER38, M AR I L. KO H Y A M A69, K A I R A H A R A G U C H I71, N U N U N G P. N U R G R A H A72, DAVID A. COOMES68, LE PHAT QUO173, AL UE D OHO NG74, HARIS GUNAWAN74, DAVID L. A. GAVEAU24, ANDREAS LANGNER75, FELIX K. S. L I M76, DAVID P. EDWARDS76, XINGLI GIAM77, GUIDO VAN DER WERF78, RACHEL CARMENTA22, CASPAR C. VERCHOT79, LUKE GIBSON80, LAURE GANDOIS81, LAURA LINDA BOZENA GRAHAM82, JHANSON REGALINO82, SERGE A. WICH8,83, JACK RIELEY84, NICHOLAS KETTRIDGE85, CHLOE BROWN84, ROMAIN PIRARD24, SAM MOORE86, B. RIPOLL CAPILLA17, UWE BALLHORN53, HUA CHEW H087, AGATA HOSCILO88, SANDRA LOHBERGER53, THEODORE A. EVANS89, NINA YULIANTI90, GRACE BLACKHAM91, ONRIZAL92, SIMON HUSCON17, DANIEL MURDIYARSO24,93, SUNITA PANGALA33, LYDIA E. S. COLE94, LUCA TACCONI95, HENDRIK SEGAH91, PRAYOTO TONO96, JANICE S. H. LEE97, GERALD SCHMILEWSKI98, STEPHAN WULFFRAAT99, ERIANTO INDRATUTRA2,3,100, MEGAN E. CATTAU101, R. S. CLYMO102, ROSS MORRISON103, AAZANI MUJAHID104, JUKKA MIETTINEN105, SOO CHIN LI EW105, SAMU VALPOLA106, DAVID WILSON107, LAURA D’ARCY17, M ICHEL GERDING98, SITI SUNDARI108, SARA A. THORNTON17,18, BARBARA KALISZ9, THOMAS J. CHAPMAN110, AHMAD SUHAIZI MAT SU111, IMAM BASUKI24,32, MASAYUKI ITOH112, CARL TRAEHOLT113, SEAN SLOAN46, ALEXANDER K. SAYOK114 and ROXANE ANDERSEN115, *

1Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117453, Singapore, 2ConservationLinks, 433 Clementi Avenue 3, #01-258, 120433, Singapore, 3Rimba, Malaysia, Jalan 1/9D, Bandar Baru Bangi, Selangor, MY 43650, Malaysia, 4University of Helsinki, P.O. Box 3 (Fabianinkatu 33), 00014 Helsinki, Finland, 5Faculté des Sciences de l’Agriculture et de l’Alimentation, 2425, Rue de l’agriculture, Pavillon Paul-Comtois, Bureau 1122, Ville de Québec, QC G1V 0A6, Canada, 6School of Biosciences, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia, 7Tropical Catchment Research Initiative (TROCAIR), Kuala Lumpur, Malaysia, 8School of Natural Sciences &

Correspondence: Lahiru Wijedasa & Roxane Andersen, tel. +65-90667160, fax +65-67792486, e-mails: lahirux@gmail.com, Roxane.
Andersens@uhi.ac.uk

© 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Amsterdamseweg 15, 6814 CM Arnhem, The Netherlands, \(^\text{66}\) Lancaster Environment Centre, Library Avenue, Lancaster University, Lancaster LA1 4YQ, UK, \(^\text{67}\) Southeast Asian Biodiversity Society, Raffles Museum of Biodiversity Research, Faculty of Science, The National University of Singapore, Block 56, Level 3, Science Drive 2, 117600, Singapore, \(^\text{68}\) Wetlands International, P.O. Box 471, 6700 AL Wageningen, The Netherlands, \(^\text{69}\) Department of Plant Sciences, University of Cambridge, Downing St, Cambridge CB2 3EA, UK, \(^\text{70}\) Hokkaido University, 5 Chome Kita 8 Jonishi, Kita Ward, Sapporo, Hokkaido Prefecture 060-0808, Japan, \(^\text{71}\) NPO Hokkaido Institute of Hydro-Climate, Frontier 14, N 14 W 3, Kita-ku, Sapporo 001-0014, Japan, \(^\text{72}\) Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata-ku, Kitakyushu-shi, Fukuoka 804-8550, Japan, \(^\text{73}\) Research and Development Institute on Watershed Management, Technology, Research, Development and Innovation Agency, Ministry of Environment and Forestry, Wanakakti Block I 2nd Floor Jalan Jenderal Gatot Subroto Jakarta Pusat, 10270 Jakarta, Indonesia, \(^\text{74}\) Institute for Environment and Natural Resources, National University at HCM City, 6 Quarter, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam, \(^\text{75}\) Peatland Restoration Agency (BRG), UNPAR, jakarta LP3HL, Indonesia, \(^\text{76}\) Joint Research Centre of the European Commission, Directorate D – Sustainable Resources – Bio-Economy Unit, Via E. Fermi, 2749, 1-21027 Ispra (VA), Italy, \(^\text{77}\) Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK, \(^\text{78}\) School of Aquatic and Fishery Sciences, University of Washington, University Park, Seattle, WA 98105, USA, \(^\text{79}\) Faculty of Earth and Life Sciences, University Amsterdam, De Boelelaan 1085-1087, 1081 HV Amsterdam, The Netherlands, \(^\text{80}\) School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China, \(^\text{81}\) Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, INPT, UPS, 18, Route de Narbonne Bât. 4R1, 31062 Toulouse Cedex 9, France, \(^\text{82}\) Boromo Orangutan Survival Foundation (BOSF), Jalan Papadapan No. 10, Bogor 16151, Indonesia, \(^\text{83}\) Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands, \(^\text{84}\) School of Geography, University of Nottingham, University Park, Nottingham NG7 2RD, UK, \(^\text{85}\) School of Geography, Earth and Environmental Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK, \(^\text{86}\) Environmental Change Institute, School of Geography and the Environment, University of Oxford, South Parks Road, Oxford OX1 3QY, UK, \(^\text{87}\) Nature Society (Singapore), 510 Geylang Road, 802-05, The Sunflower, 389466, Singapore, \(^\text{88}\) Remote Sensing Centre, Institute of Geodesy and Cartography, ul. Mozdokowskiego 27, 02-679 Warsaw, Poland, \(^\text{89}\) School of Animal Biology, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA 6009, Australia, \(^\text{90}\) University of Palangka Raya, Palangkaraya, 73112 Central Kalimantan, Indonesia, \(^\text{91}\) Wildfoot and Wetlands Trust, Queen Elizabeth’s Walk, London SW13 9WT, UK, \(^\text{92}\) Tropical Forest Ecology and Conservation Division, Faculty of Forestry, Universitas Sumatera Utara, Jl. Dr. Mansur No. 9B, Kampus USU, Padang Bulan, Kota Medan, Sumatera Utara 20155, Indonesia, \(^\text{93}\) Department of Geophysics and Meteorology, Bogor Agricultural University, Jln. Meranti, Kampus IPB Darmaga, Bogor 16680, Indonesia, \(^\text{94}\) Department of Global Change Biology Zoology, Oxford Long-term Ecology Laboratory, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK, \(^\text{95}\) Crawford School of Public Policy, The Australian National University, Acton, Canberra, ACT 2601, Australia, \(^\text{96}\) Graduate School for International Development and Cooperation, Hiroshima University, 1-5-1 Kagamiyama, Higashi-Hiroshima 739-8529, Japan, \(^\text{97}\) Asian School of the Environment, Nanyang Technological University, Nanyang Avenue, Singapore, \(^\text{98}\) International Peatland Society, Nisulankatu 78, 40720 Jyväskylä, Finland, \(^\text{99}\) World Wide Fund for Nature, Simatupang Tower 2 Unit C 7 Floor Jl. Letjen TB. Simatupang Kav. 38, Jakarta Selatan 12540, Indonesia, \(^\text{100}\) Faculty of Forestry, Bogor Agricultural University, Jl. Lingkar Akademik Kampus IPB, Dramaga, Bogor, Jawa Barat 16680, Indonesia, \(^\text{101}\) Grand Challenge Earth Lab, University of Colorado, 4001 Discover Drive Suite S348, Boulder, CO 80303, USA, \(^\text{102}\) Queen Mary University of London, Mile End Rd, London E1 4NS, UK, \(^\text{103}\) Land Surface Flux Measurements Group, Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowthmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK, \(^\text{104}\) Department of Aquatic Science, Faculty of Resource Science and Technology, Universitas Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, \(^\text{105}\) Centre for Remote Imaging, Sensing and Processing, National University of Singapore, 10 Lower Kent Ridge Road, Blk S17, Level 2, 119076, Singapore, \(^\text{106}\) Geological Survey of Finland, P.O. Box 97 (Vaasan tie 6), FI 67101 Kokkola, Finland, \(^\text{107}\) Earthy Matters Environmental Consultants, Glenvar, Letterkenny, Co., Donegal, Ireland, \(^\text{108}\) Research Centre for Biology, Indonesian Institute of Sciences (LIPI), Jl. Raya Jakarta – Bogor Km. 46 Cibinong, 16911 Bogor, Indonesia, \(^\text{109}\) Department of Soil Science and Land Reclamation, Faculty of Environment and Agriculture, University of Warmia and Mazury, Michała Oczapowskiego 2, Olsztyn, Poland, \(^\text{110}\) Ecological Sciences Group, The James Hutton Institute, Craigiebuckler, Aberdeen, AB158QH Scotland, UK, \(^\text{111}\) Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Malaysia, \(^\text{112}\) Centre for Southeast Asian Studies, Kyoto University, 46 Shimoaodachi-cho, Yoshida Sakyo-ku, Kyoto 606-8501, Japan, \(^\text{113}\) Southeast Asia Program, Research and Conservation Division, Copenhagen Zoo, Roskildevej 32, 2000 Frederiksberg, Denmark, \(^\text{114}\) Institute of Biodiversity and Environmental Conservation, Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia, \(^\text{115}\) Environmental Research Institute, University of Highlands and Islands, Castle St., Thurso KW147JD, UK.

© 2017 The Authors Global Change Biology Published by John Wiley & Sons Ltd., 23, 977–982
Drained fire-prone drained peatlands (Kettridge et al., 2015; Turetsky et al., 2015; Page & Hooijer, 2016).

In reality, just how much of the estimated 69 gigatonnes of carbon (Page et al., 2011) stored in South-East Asian tropical peatlands is being lost due to agricultural operations under the current management regime is still uncertain. Of great concern is that none of the agricultural management methods applied to date have been shown to prevent the loss of peat and the associated subsidence of the peatland surface following drainage (Wöstien et al., 1997; Melling et al., 2008; Hooijer et al., 2012; Evers et al., 2016). Recent projections suggest that large areas of currently drained coastal peatlands will become undrivable and progressively be subjected to longer periods of inundation by river and ultimately sea water (Hooijer et al., 2015a,b; Sumarga et al., 2016). With growing risk of saltwater intrusion, agriculture in these coastal lands will become increasingly untenable, calling into question the very notion of 'long-term sustainability of tropical peatland agriculture'.

A more accurate view of drained peatland agriculture is that of an extractive industry, in which a finite resource (the peat) is ‘mined’ to produce food, fibre and fuel, driven by global demand. In developing countries with growing populations, there are strong socio-economic arguments for exploiting this resource to support local livelihoods and broader economic development (Mizuno et al., 2016). However, we must accept that ongoing peat loss is inevitable under this scenario. Science-based measures towards improved management, including limitations on the extent of plantation development, can be used to minimize the rate of this peat loss (President of Indonesia, 2011). Such an evidence-based position, supported with data and necessary legal instruments, is needed for sustainable futures. The scientifically unfounded belief that drained peatland agriculture can be made ‘sustainable’, and peat loss can be halted, via unproven methods such as peat compaction debilitates the effort to find sustainable possibilities. To a large extent, the issues surrounding unsustainable peatland management have now been recognized by sections of industry (Wilmar, 2013; APP, 2014; Cargill Inc., 2014; Mondelēz International, 2014; Sime Darby Plantation, 2014; APRIL, 2015; Olam International, 2015), government (President of Indonesia, 2014, 2016, Mongabay, 2015; Mongabay Haze Beat, 2015; Hermansyah, 2016) and consumers (Wijedasa et al., 2015). In recognition of the constraints and risks of peatland development, many large and experienced oil palm and pulpwod companies have halted further development on peat and introduced rigorous management requirements for existing peatland plantations (Lim et al., 2012). However, the denial of the empirical basis calling for improved peatland management
remains persistent in influential policy spaces, as illustrated by the articles reporting on the controversy (‘Oil palm planting on peat soil handled well, says Uggah, 2016b; Cheng & Sibon, 2016; Nurbianto, 2016a,b). The search for more responsible tropical peatland agriculture techniques includes promising recent initiatives to develop methods to cultivate crops on peat under wet conditions (Giesen, 2015; Dommain et al., 2016; Mizuno et al., 2016). While a truly sustainable peatland agriculture method does not yet exist, the scientific community and industry are collaborating in the search for solutions (International Peat Society, 2016), and for interim measures to mitigate ongoing rates of peat loss under existing plantations. Failing to recognize the devastating consequences of the current land use practices on peat soils and failing to work together to address them could mean that the next generation will have to deal with an irreversibly altered, dysfunctional landscape where neither environment nor society, globally or locally, will be winners.

Acknowledgements

Open access facilitated by Greifswald Mire Centre and Department of Forestry Sciences, University of Helsinki.

References

Mongabay (2015) Jokowi to oversee Indonesia peat restoration agency but details thin on the ground. Mongabay

Mongabay Haze Beat (2015) Jokowi pledges Indonesia peatland “revitalization” to stop the burning. Mongabay

President of Indonesia (2014) Government Regulation Number 71 of year 2014 about Protection and Management of Peat Ecosystems.

President of Indonesia (2016) Presidential Regulation Number 1 of year 2016 About Peat Restoration Agency.

Wong J (2016) Yield of oil palm on peatland can be doubled. The Star.