Low-Temperature Polymorphic Phase Transition in a Crystalline Tripeptide

<table>
<thead>
<tr>
<th>Citation</th>
<th>Markin, Alexey V.; Markhasin, Evgeny; Sologubov, Semen S.; Ni, Qing Zhe; Smirnova, Natalia N. and Griffin, Robert G. "Low-Temperature Polymorphic Phase Transition in a Crystalline Tripeptide." Journal of Physical Chemistry B 119, 5 (February 2015): 1787–1792 © 2015 American Chemical Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1021/jp508710g</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Chemical Society (ACS)</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Accessed</td>
<td>Sun Dec 16 18:53:34 EST 2018</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/110453</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Low-Temperature Polymorphic Phase Transition in a Crystalline Tripeptide \(\text{L-Ala-Pro-Gly} \cdot \text{H}_2\text{O} \) Revealed by Adiabatic Calorimetry

Alexey V. Markin\(^{†,§}\), Evgeny Markhasin\(^{†,§}\), Semen S. Sologubov\(^†\), Qing Zhe Ni\(^†\), Natalia N. Smirnova\(^†\), and Robert G. Griffin\(^‡\)

\(^†\)Lobachevsky State University of Nizhny Novgorod, Gagarin Pr. 23/5, Nizhny Novgorod 603950, Russia

\(^‡\)Massachusetts Institute of Technology, 150 Albany Street, Cambridge, Massachusetts 02139, United States

Abstract

We demonstrate application of precise adiabatic vacuun calorimetry to observation of phase transition in the tripeptide \(\text{L-alanyl-L-prolyl-glycine} \) monohydrate (APG) from 6 to 320 K and report the standard thermodynamic properties of the tripeptide in the entire range. Thus, the heat capacity of APG was measured by adiabatic vacuun calorimetry in the above temperature range. The tripeptide exhibits a reversible first-order solid-to-solid phase transition characterized by strong thermal hysteresis. We report the standard thermodynamic characteristics of this transition and show that differential scanning calorimetry can reliably characterize the observed phase transition with <5 mg of the sample. Additionally, the standard entropy of formation from the elemental substances and the standard entropy of hypothetical reaction of synthesis from the amino acids at 298.15 K were calculated for the studied tripeptide.

INTRODUCTION

Partial or complete structural elucidation of the atomic level structure of biological molecules, such as peptides and proteins, is essential for subsequent investigation of their function and disfunction. Structural information at the atomic level is primarily provided by
diffraction and magnetic resonance techniques. Because both techniques can benefit from low temperatures, these experiments are often performed on cryogenically cooled samples. Furthermore, certain techniques, such as dynamic nuclear polarization (DNP)1,2 in combination with cryogenic magic-angle spinning (MAS)3 nuclear magnetic resonance (NMR), provide valuable information, which may not be otherwise available. At the same time, it is the ambient temperature structure, which is of interest4–7

Calorimetric techniques, such as differential scanning calorimetry (DSC) or adiabatic calorimetry, are particularly suitable for probing temperature-dependent changes in structure, including polymorphism8–10 and glass-like transitions.5,11–15 If phase transformations, irreversible changes, or inadequate reproducibility cannot be detected in calorimetric experiments, the low-temperature spectroscopic data are likely to be relevant. Additionally, calorimetric information is also valuable for thermodynamic analysis of processes and thermodynamic databanks.16

Canonical amino acids or their common derivatives and small peptides are two classes of relatively simple molecules conventionally used for methods development aimed at biological objects. Several such model molecules have been routinely used in the Griffin Lab. Low-temperature thermodynamic properties are available for most of the canonical amino acids,8–10,18–31 as well as a number of other biological molecules,17 including short peptides32–36 and even proteins.11,15,37–40 Most of these works report relatively monotonic heat capacity dependence without well-pronounced phase transitions, and additive behavior of heat capacity in a wide range of temperatures.34,36 The present work was motivated by a variety of spectral changes observed in variable temperature MAS NMR spectra of two model tripeptides, APG (Ni et al., in preparation) and N-formyl-\textit{L}-Met-\textit{L}-Leu-\textit{L}-Phe (N-f-MLF–OH).41 Our previous investigation of MLF–OH that exhibits similar peculiarities in the NMR data41 did not reveal any phase transitions.36 Thus, the purposes of the present study included the extension of that investigation to APG using adiabatic calorimetry and DSC, detection of possible phase transitions and their thermodynamic characteristics, and obtaining the standard thermodynamic properties of the tripeptide in a wide temperature range from 6 to 320 K.

EXPERIMENTAL SECTION

Synthesis and Characterization of the Tripeptide

Tripeptide Ala-Pro-Gly (lot 0513046) was purchased from Bachem (King of Prussia, PA) and recrystallized from water. The crystal structure of the sample (space group \(P2_12_12_1\), \(Z = 4\))42,43 was confirmed by single-crystal X-ray diffraction (Siemens three-circle Platform diffractometer) and by powder X-ray diffraction (PANalytical X-*Pert Pro multipurpose diffractometer equipped with Oxford Cryosystems Phenix cryostat). The sample purity was >99% (TLC) and in accordance with elemental analysis for anhydrous tripeptide (\(C_{19}H_{17}N_3O_4\), found/calculated (mass %): C 46.09/45.97, H 7.27/7.33, N 16.01/16.08.

Adiabatic Calorimetry

A precision adiabatic calorimeter (Block Calorimetric Thermophysical, BCT-3) was used to measure heat capacities over the temperature range from 6 to 320 K. The design and
operation of an adiabatic calorimeter are described in detail elsewhere.44,45 A calorimetric cell is a thin-walled cylindrical vessel made from titanium with a volume of $1.5 \times 10^{-6} \text{ m}^3$ and mass of $1.626 \pm 0.005 \text{ g}$. A miniature iron–rhodium resistance thermometer (nominal resistance 100Ω; calibrated on ITS-90 standard by the Russian Metrology Research Institute, Moscow region, Russia) was used to measure the temperature of the sample. The temperature difference between the ampule and an adiabatic shield was controlled by a four-junction copper–iron chromel thermo-couple. The sensitivity of the thermometric circuit was $1 \times 10^{-3} \text{ K}$ and that of the analog-to-digital converter was $0.1 \mu \text{V}$. The accuracy of the calorimeter was verified using standard reference samples (K-2 benzoic acid and α-Al$_2$O$_3$)46,47 prepared by the Institute of Metrology of the State Standard Committee of the Russian Federation. The deviations of our results from the recommended values of NIST46 are within $0.02 \ C_p,m$ between 6 and 20 K, $0.005 \ C_p,m$ between 20 and 40 K, and $0.002 \ C_p,m$ between 40 and 320 K. The standard uncertainty for the temperature was $u(T) = 0.01 \text{ K}$, and the relative standard uncertainty for the enthalpies of transitions was $u_r(\Delta H) = 0.002$.

Differential Scanning Calorimetry

DSC experiments were conducted on a differential scanning calorimeter DSC 204 Fl Phoenix, Netzsch–Gerätebau, Germany. The calorimeter was calibrated and tested against melting of n-heptane, mercury, tin, lead, bismuth, and zinc. The standard uncertainty for temperature was $u(T) = 0.5 \text{ K}$, and the relative standard uncertainty for enthalpies of transitions was $u_r(\Delta H) = 0.01$. The measurements were carried out in an argon atmosphere in accordance with protocols described elsewhere.48,49

Heat Capacity Measurements

A sample of tripeptide (0.1991 g) was placed in a calorimetric ampule, which was then filled with dry helium gas to the pressure of 4 kPa at room temperature to facilitate heat transfer. Initially, the sample was cooled to the temperature of the measurement onset (~6 K) at a rate of 0.01 K/s. Then, the sample was heated in 0.5 to 2 K increments at a rate of 0.01 K/s. The sample temperature was recorded after an equilibration period (temperature drift <0.01 K·s$^{-1}$, ~10 min per experimental point).

The experimental values of $C_{p,m}$ were obtained in four series reflecting the sequence of experiments. The heat capacity of the sample was between 15 and 50% of the overall heat capacity of the calorimetric ampule with the substance within the studied temperature range.

The experimental data were smoothed using least-squares polynomial fits as follows

$$ C_{p,m} = \begin{array}{ll}
 i=0 \sum A_i \ln \left(\frac{T}{30} \right)^i, & 6 \leq T \leq 40 \text{ K} \\
 \sum B_i \ln \left(\frac{T}{30} \right)^i, & 40 \leq T \leq 320 \text{ K}
\end{array} $$

where A_i and B_i are polynomial coefficients. Smoothing of the experimental values of $C_{p,m}$ was performed over the whole temperature range excluding the intervals of phase
transitions. The relative standard uncertainty of heat capacity \(u_r(C_{p,m}) \) is 0.006 and 0.003 in
temperature ranges 6 ≤ \(T \) ≤ 40 K and 40 ≤ \(T \) ≤ 320 K, respectively.

The molar mass of \(l^{-}-\text{Ala}-l^{-}-\text{Pro}-\text{Gly}\cdot\text{H}_2\text{O} \) (261.28 g·mol\(^{-1}\)) was calculated from the
International Union of Pure and Applied Chemistry (IUPAC) table of atomic weights.\(^{50}\)

RESULTS AND DISCUSSION

Heat Capacity and Thermodynamic Characteristics of Phase Transition

Experimental molar heat capacity \(C_{p,m} \) of \(l^{-}-\text{Ala}-l^{-}-\text{Pro}-\text{Gly}\cdot\text{H}_2\text{O} \) over the temperature range
from 6 to 320 K is presented in Figure 1. There are two regions in which heat capacity
changes nonmonotonically.

The strong peak in the range of 226 to 265 K is characteristic of a first-order phase
transition, which is assigned to a polymorphic solid-to-solid phase transition (crII ↔ crI).
The anomaly between 275 and 287 K is attributed to excitation of rotational degrees of
freedom. Both of these features were well-reproducible in all experiments, and their
standard thermodynamic properties obtained using adiabatic vacuum calorimetry are
presented in Table 1.

The crI ↔ crI phase transition exhibits strong thermal hysteresis, and upon slow cooling
(0.05 K/s) the high-temperature phase crI could be supercooled to ~210 K (pink trace in
Figure 1). Further cooling of the sample was accompanied by heat liberation associated with
the transformation of the metastable phase crI to the stable phase crII. This supercooling
phenomenon was also clearly observed in a single-crystal X-ray diffraction study, where
single-crystal disintegration occurred in the same temperature range (Figure 2). All X-ray
attempts to cool a single crystal of APG eventually resulted in full disintegration of the
sample, sometimes in an explosive manner, indicating significant changes in the crystal
structure. The strong thermal hysteresis is, in turn, consistent with a large activation barrier
separating two significantly different crystal structures. Present result can thus be contrasted
with the previously studied tripeptide N-\(f^{-}\)-MLF–OH.\(^{36}\) While both exhibit similar anomalies
in the temperature-dependent MAS NMR spectra involving line doubling, calorimetric
experiment established that no phase transitions occurred in the case of N-\(f^{-}\)-MLF–OH.

While adiabatic vacuum calorimetry is a reliable and precise method of investigation of
polymorphic phase transitions in different materials, including peptides and proteins, it
requires a relatively large sample size, thus limiting its application to mass limited
biomolecules. DSC is less precise but can be used to study smaller samples. To test its
limits, we applied DSC to characterization of the polymorphic phase transition crII ↔ crI
using two small samples (10.6 and 4.7 mg) and compared the obtained thermodynamic
properties with the result of adiabatic vacuum calorimetry. Figure 3 shows the DSC traces
for the two studied samples, and the corresponding thermodynamic properties of the phase
transition are presented in Table 2. The enthalpy of transition, transition temperature, and
temperature range agree with each other for the two experiments and are within the
experimental error compared with the values obtained by adiabatic vacuum calorimetry.
(Table 1). Therefore, DSC should be suitable for characterization of polymorphic phase transitions in peptides and, possibly, other biomolecules using several milligrams of sample.

Low-temperature heat capacity data were also analyzed using the multifractal model51

\[C_\nu = 3 D (D + 1) k N \gamma (D + 1) \zeta (D + 1) \left(\frac{T}{\Theta_{\text{max}}} \right)^D \]

(1)

where \(D \) is the fractal dimension, \(N \) is the number of atoms in a molecular unit, \(k \) is the Boltzmann constant, \(\gamma \) is the \(\gamma \) function, \(\zeta \) is the Riemann \(\zeta \) function, and \(\Theta_{\text{max}} \) is the characteristic temperature. For a particular solid, \(3 D (D + 1) k N \gamma (D + 1) \zeta (D + 1) = A \) is a constant, and eq 1 can be rewritten as follows

\[\ln (C_\nu) = A + D \ln (T) \]

(2)

which can be used to obtain \(D \) and \(\Theta_{\text{max}} \). Because below 50 K \(C_p \approx C_\nu \), experimental data in the range \(20 \leq T \leq 50 \text{ K} \) were used. We obtained \(\Theta_{\text{max}} = 252.0 \text{ K} \) (relative standard uncertainty \(u_r(\Theta_{\text{max}}) = 0.007 \)) and \(D = 2 \), which according to the fractal model51 corresponds to a layered structure.

Standard Thermodynamic Functions

The Debye theory52 was used to fit the experimental data in the range \(6 \leq T \leq 12 \text{ K} \) and extrapolate it to 0 K

\[C_{p,m} = n D \left(\frac{\Theta_D}{T} \right) \]

(3)

where \(D \) is the Debye function and \(n \) and \(\Theta_D \) are fitting parameters. Using this equation, we obtained \(n = 6 \), \(\Theta_D = 130.5 \text{ K} \), and the relative standard uncertainty of the fit \(u_r(C_{p,m}) = 0.013 \) for \(6 \leq T \leq 12 \text{ K} \). In subsequent calculations, we assumed that the relative standard uncertainty of the extrapolated \(C_{p,m} \) to \(T = 0 \text{ K} \) was the same.

\(H(T) - H(0) \) and \(S(T) \) were calculated by numerical integration of \(C_{p,m} \) with respect to \(T \) and \(\ln T \), respectively, and Gibbs energy was calculated from enthalpy and entropy following published procedures.53 The residual entropy of \(\text{L-Ala-L-Pro-Gly\cdotH}_2\text{O} \) was assumed to be zero (Table 3). The standard entropies of the tripeptide and elemental substances, including carbon,54 hydrogen,55 nitrogen,54 and oxygen,55 yielded the standard entropy of formation

\[10\text{C(gr)} + 19/2\text{H}_2\text{(g)} + 3/2\text{N}_2\text{(g)} + 5/2\text{O}_2\text{(g)} \rightarrow \text{C}_{10}\text{H}_{19}\text{N}_3\text{O}_5 \ (cr) \]

\[\Delta_f S (298.15\text{ K}) = -1705 \pm 17 \text{ J K}^{-1} \text{ mol}^{-1} \]

where cr, gr, and g are crystal, graphite, and gas, respectively. The standard entropies of amino acids, including alanine,31 proline,28 and glycine,27 also yielded the standard entropy of synthesis of the tripeptide from individual amino acids.
The formation of a complex molecule (tripeptide) from several simpler molecules (amino acids) usually results in reduction of entropy. The positive change of entropy in this process indicates that the formation of another small molecule (water) in the liquid state outweighs the loss of entropy due to formation of a larger molecule. The overall magnitude of entropy change is relatively small and the Gibbs energy of the reaction is likely to be dominated by the enthalpy contribution.

CONCLUSIONS

Adiabatic vacuum calorimetry revealed a well-defined first-order polymorphic phase transition in a crystalline tripeptide \(L^{-}Ala^{-}L^{-}Pro^{-}Gly\)·H\(_2\)O. This transition exhibits a strong thermal hysteresis, and the high-temperature phase can be readily supercooled by \(-50\) K. The supercooling phenomenon was also observed in single-crystal X-ray experiments. Because of the polymorphic transition in this situation, structural information obtained at cryogenic temperatures is likely to be irrelevant to the room temperature structure.

In DSC experiments, the same transition was accurately reproduced with \(<5\) mg of sample. The standard thermodynamic characteristics of the phase transition were independently determined by both adiabatic calorimetry and DSC, and the obtained values were within the experimental error. Thus, it should be possible to apply DSC to the investigation of small biological samples, although additional verification on other model systems is desirable.

Heat capacity of the peptide was measured over the range from 6 to 320 K by precise adiabatic vacuum calorimetry. Standard thermodynamic functions of the tripeptide were calculated over the range from 0 to 320 K. The standard entropies of formation of the tripeptide from elemental substances and individual amino acids have also been reported.

The low-temperature \((T \leq 50\) K) heat capacity was analyzed using Debye’s theory of heat capacity and its multifractal model, and a layered structure topology was established for the studied tripeptide.

The next stage should involve application of calorimetry to other objects, such as model amyloidogenic peptides.

ACKNOWLEDGMENTS

We thank Dr. Peter Müller and X-ray Diffraction Facility, Department of Chemistry, MIT for collecting single crystal X-ray data.

Funding

\[L^{-}Ala\,(cr)+L^{-}Pro\,(cr)+Gly\,(cr) \rightarrow L^{-}Ala\,L^{-}Pro\,Gly\,H_2O\,(cr)+H_2O \]

\[\Delta_r S(298.15 \text{ K}) = 77.96 \pm 0.78 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \]
This research was supported by the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health through grants EB-003151, EB-001960, and EB-002026; the Ministry of Education and Science of the Russian Federation (contract no. 4.1275.2014/K). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

REFERENCES

(16). Kolesov BA, Minkov VS, Boldyrev EA, Drebushchak TN. Phase Transitions in the Crystals of L- and Di-Cysteine on Cooling: Intermolecular Hydrogen Bonds Distortions and the Side-Chain

Figure 1.
Temperature dependence of the molar heat capacity $C_{p,m}$ of L-Ala-L-Pro-Gly·H$_2$O. Pink line corresponds to a metastable state.
Figure 2.
Photographs showing a supercooled single crystal of APG fracturing due to a polymorphic phase transition.
Figure 3.
DSC traces for two samples of APG (10.6 mg, top; 4.7 mg, bottom) showing the phase-transition region.
Table 1

Standard Thermodynamic Characteristics of Phase Transitions of 1-Ala-1-Pro-Gly·H₂O Obtained by Adiabatic Vacuum Calorimetry

<table>
<thead>
<tr>
<th>transition</th>
<th>temperature range (K)</th>
<th>T_max (K)</th>
<th>Δ_H°m (kJ·mol⁻¹)</th>
<th>Δ_S°m (J·K⁻¹·mol⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>crII ↔ crI</td>
<td>226–265</td>
<td>257.7 ± 0.5</td>
<td>2.944 ± 0.015</td>
<td>11.42 ± 0.06</td>
</tr>
<tr>
<td>anomaly</td>
<td>275–287</td>
<td>280.7 ± 0.5</td>
<td>0.0806 ± 0.0004</td>
<td>0.2873 ± 0.0014</td>
</tr>
</tbody>
</table>

J Phys Chem B. Author manuscript; available in PMC 2015 May 25.
Table 2

Standard Thermodynamic Characteristics of the crII ↔ crI Phase Transition of APG Obtained by DSC

<table>
<thead>
<tr>
<th>sample mass (mg)</th>
<th>temperature range (K)</th>
<th>(T_{\text{max}}) (K)</th>
<th>(\Delta_{\text{f}} H_{\text{m}}) (kJ·mol(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6</td>
<td>228–263</td>
<td>257.7 ± 0.5</td>
<td>2.887 ± 0.014</td>
</tr>
<tr>
<td>4.7</td>
<td>228–263</td>
<td>257.9 ± 0.5</td>
<td>2.992 ± 0.015</td>
</tr>
</tbody>
</table>
Table 3

Calculated Molar Heat Capacities and Thermodynamic Functions of Crystalline L-Ala-L-Pro-Gly·H₂O at 0.1 MPa^a

<table>
<thead>
<tr>
<th>T (K)</th>
<th>C<sub>p,m</sub> (J·K<sup>−1</sup>·mol<sup>−1</sup>)</th>
<th>H(T) – H(0) (kJ·mol<sup>−1</sup>)</th>
<th>S(T) (J·K<sup>−1</sup>·mol<sup>−1</sup>)</th>
<th>−[G(T)– H(0)] (kJ·mol<sup>−1</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.235</td>
<td>0.000322</td>
<td>0.0783</td>
<td>0.0000977</td>
</tr>
<tr>
<td>10</td>
<td>1.79</td>
<td>0.00473</td>
<td>0.627</td>
<td>0.00149</td>
</tr>
<tr>
<td>15</td>
<td>6.26</td>
<td>0.0234</td>
<td>2.08</td>
<td>0.00782</td>
</tr>
<tr>
<td>20</td>
<td>13.50</td>
<td>0.07282</td>
<td>4.868</td>
<td>0.02455</td>
</tr>
<tr>
<td>25</td>
<td>22.66</td>
<td>0.1631</td>
<td>8.848</td>
<td>0.05817</td>
</tr>
<tr>
<td>30</td>
<td>32.37</td>
<td>0.3001</td>
<td>13.83</td>
<td>0.1148</td>
</tr>
<tr>
<td>35</td>
<td>42.52</td>
<td>0.4874</td>
<td>19.58</td>
<td>0.1980</td>
</tr>
<tr>
<td>40</td>
<td>52.79</td>
<td>0.7255</td>
<td>25.93</td>
<td>0.3115</td>
</tr>
<tr>
<td>45</td>
<td>62.63</td>
<td>1.014</td>
<td>32.72</td>
<td>0.4580</td>
</tr>
<tr>
<td>50</td>
<td>71.54</td>
<td>1.350</td>
<td>39.79</td>
<td>0.6394</td>
</tr>
<tr>
<td>60</td>
<td>89.18</td>
<td>2.154</td>
<td>54.39</td>
<td>1.110</td>
</tr>
<tr>
<td>70</td>
<td>106.6</td>
<td>3.133</td>
<td>69.45</td>
<td>1.729</td>
</tr>
<tr>
<td>80</td>
<td>122.9</td>
<td>4.281</td>
<td>84.76</td>
<td>2.500</td>
</tr>
<tr>
<td>90</td>
<td>137.5</td>
<td>5.585</td>
<td>100.1</td>
<td>3.424</td>
</tr>
<tr>
<td>100</td>
<td>150.2</td>
<td>7.025</td>
<td>115.3</td>
<td>4.501</td>
</tr>
<tr>
<td>110</td>
<td>162.1</td>
<td>8.587</td>
<td>130.1</td>
<td>5.728</td>
</tr>
<tr>
<td>120</td>
<td>174.1</td>
<td>10.27</td>
<td>144.8</td>
<td>7.103</td>
</tr>
<tr>
<td>130</td>
<td>186.1</td>
<td>12.07</td>
<td>159.2</td>
<td>8.623</td>
</tr>
<tr>
<td>140</td>
<td>197.2</td>
<td>13.99</td>
<td>173.4</td>
<td>10.29</td>
</tr>
<tr>
<td>150</td>
<td>208.8</td>
<td>16.01</td>
<td>187.3</td>
<td>12.09</td>
</tr>
<tr>
<td>160</td>
<td>222.5</td>
<td>18.17</td>
<td>201.3</td>
<td>14.03</td>
</tr>
<tr>
<td>170</td>
<td>235.1</td>
<td>20.46</td>
<td>215.1</td>
<td>16.11</td>
</tr>
<tr>
<td>180</td>
<td>246.6</td>
<td>22.87</td>
<td>228.9</td>
<td>18.34</td>
</tr>
<tr>
<td>190</td>
<td>258.0</td>
<td>25.39</td>
<td>242.5</td>
<td>20.69</td>
</tr>
<tr>
<td>200</td>
<td>269.8</td>
<td>28.03</td>
<td>256.1</td>
<td>23.19</td>
</tr>
<tr>
<td>210</td>
<td>282.2</td>
<td>30.79</td>
<td>269.5</td>
<td>25.81</td>
</tr>
<tr>
<td>220</td>
<td>292.6</td>
<td>33.67</td>
<td>282.9</td>
<td>28.58</td>
</tr>
<tr>
<td>230</td>
<td>302.3</td>
<td>36.64</td>
<td>296.1</td>
<td>31.47</td>
</tr>
<tr>
<td>240</td>
<td>312.0</td>
<td>39.71</td>
<td>309.2</td>
<td>34.50</td>
</tr>
<tr>
<td>250</td>
<td>321.7</td>
<td>42.88</td>
<td>322.2</td>
<td>37.65</td>
</tr>
<tr>
<td>260</td>
<td>331.4</td>
<td>46.15</td>
<td>335.0</td>
<td>40.94</td>
</tr>
<tr>
<td>265</td>
<td>336.3</td>
<td>47.82</td>
<td>341.3</td>
<td>42.63</td>
</tr>
</tbody>
</table>

Crystal I

<p>| 265 | 336.3 | 50.76 | 352.4 | 42.63 |
| 270 | 341.9 | 52.46 | 358.8 | 44.41 |
| 273.15| 345.8 | 53.54 | 362.7 | 45.55 |
| 280 | 354.7 | 55.94 | 371.4 | 48.06 |</p>
<table>
<thead>
<tr>
<th>T (K)</th>
<th>$C_{p,m}$ (J·K$^{-1}$·mol$^{-1}$)</th>
<th>$H(T) - H(0)$ (kJ·mol$^{-1}$)</th>
<th>$S(T)$ (J·K$^{-1}$·mol$^{-1}$)</th>
<th>$-[G(T) - H(0)]$ (kJ·mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>290</td>
<td>367.0</td>
<td>59.55</td>
<td>384.1</td>
<td>51.84</td>
</tr>
<tr>
<td>298.15</td>
<td>376.6</td>
<td>62.58</td>
<td>394.4</td>
<td>55.01</td>
</tr>
<tr>
<td>300</td>
<td>378.8</td>
<td>63.28</td>
<td>396.7</td>
<td>55.74</td>
</tr>
<tr>
<td>310</td>
<td>393.2</td>
<td>67.13</td>
<td>409.4</td>
<td>59.77</td>
</tr>
<tr>
<td>320</td>
<td>418.1</td>
<td>71.17</td>
<td>422.2</td>
<td>63.93</td>
</tr>
<tr>
<td>321</td>
<td>421.6</td>
<td>71.59</td>
<td>423.5</td>
<td>64.35</td>
</tr>
</tbody>
</table>

a Standard uncertainty of temperature $u(T) = 0.01$ K. Relative standard uncertainty of heat capacity $u_r(C_{p,m})$ is 0.02, 0.005, and 0.002 in ranges 6 ≤ T ≤ 15 K, 15 ≤ T ≤ 40, and 40 ≤ T ≤ 321 K, respectively.