Serially connected monolayer MoS FETs with channel patterned by a 7.5 nm resolution directed self-assembly lithography

Citation

As Published
http://dx.doi.org/10.1109/VLSIT.2016.7573376

Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Version
Author's final manuscript

Accessed
Fri Dec 28 02:22:54 EST 2018

Citable Link
http://hdl.handle.net/1721.1/110749

Terms of Use
Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms
http://creativecommons.org/licenses/by-nc-sa/4.0/
Serially Connected Monolayer MoS2 FETs with Channel Patterned by a 7.5 nm Resolution Directed Self-Assembly Lithography

Conference Paper · June 2016
DOI: 10.1109/VLSIT.2016.7573376

CITATIONS 0
READS 45

10 authors, including:

Amirhasan Nourbakhsh
Massachusetts Institute of Technology
34 PUBLICATIONS 356 CITATIONS

Amir Tavakkoli
Massachusetts Institute of Technology
16 PUBLICATIONS 256 CITATIONS

Jing Kong
Massachusetts Institute of Technology
300 PUBLICATIONS 17,564 CITATIONS

Karl K. Berggren
Massachusetts Institute of Technology
261 PUBLICATIONS 6,508 CITATIONS

Some of the authors of this publication are also working on these related projects:

Scaling and transport properties of two-dimensional materials transistor View project

Superconducting nanowire single-photon detectors View project
Abstract: We demonstrate sub-10 nm transistor channel lengths by directed self-assembly patterning of monolayer MoS2 in a periodic chain of homojunction semiconducting-(2H) and metallic-phase (1T') MoS2 regions with half-pitch of 7.5 nm. The MoS2 composite transistor possesses an off-state current of 100 pA/μm and an I_on/I_off ratio in excess of 10^5. Modeling of the resulting current-voltage characteristics reveals that the 2H/1T' MoS2 homojunction has a resistance of 75 Ω.μm while the 2H-MoS2 exhibits low-field mobility of ~8 cm^2/V.s and carrier injection velocity of ~10^6 cm/s.

Introduction: 2D crystals of layered transition metal dichalcogenides (2D-TMDs) such as MoS2 are ideal candidates for aggressive miniaturization of field-effect transistors (FETs) to the single digit nanometer scale. In addition to large bandgap, chemical stability and compatibility with CMOS processes [1, 2], this class of materials can benefit from their atomically thin body with dangling-bond-free surfaces. Because of this and their ultra-small body thickness which leads to very small electrostatic characteristic scaling length, λ≈(εr,εs,λox/εox), transistor subthreshold swing (SS) and drain-induced barrier lowering (DIBL) coefficient can be significantly smaller than for conventional thin-body semiconductors. In particular, monolayer-MoS2 (ML-MoS2), because of its bandgap of 1.8 eV yields high I_on/I_off ratio MOSFETs, while its low dielectric constant, εs = 4-7, and atomically thin body, t_s ≈ 0.7 nm, facilitate the reduction of λ.

In our previous work [3], we reported a 15-nm channel length MoS2 FET using monolayer graphene as the Source/Drain (S/D) contacts. In this work, by exploiting the semiconducting to metallic phase transition in MoS2 [4], we demonstrate a sub-10-nm transistor channel length by patterning of MoS2 in a periodic chain of homojunction semiconducting- (2H) and metallic-phase (1T') MoS2 regions. The 2H- to 1T’-phase transition occurs by exposing 2H-MoS2 to n-butyl lithium solution as confirmed by electrical and photoluminescence measurements (Fig.1). Sub-10 nm 1T’/2H MoS2 patterning is achieved by directed self-assembly (DSA) of block copolymers (BCP) technique which is one of the most promising emerging technologies for cost-effective, nanoscale, and high-volume manufacturing [5].

Device Fabrication: The key steps for fabricating BCP patterned MoS2 FETs, as well as a schematic of the devices are shown in Figs. 2 and 3, respectively. ML-MoS2, grown by chemical vapor deposition (CVD), was transferred onto a [p+ Si/native SiO2] substrate coated with 10 nm of HNO3 (ET= 4 nm) serving as the back gate (BG). Subsequently, by means of electron beam lithography and Au metallization, end-contacts to the MoS2 film and measurement pads were formed. Next the surface of the substrate is functionalized with hydroxyl terminated polystyrene (OH-PS), poly(styrene-b-dimethylsiloxane) (PS-b-PDMS) BCP solution is spun-on followed by a solvent vapor annealing step to promote microphase separation, and finally selective reactive ion etching (RIE) of PS matrix is done in a controlled O2 plasma leaving behind oxidized-PDMS (ox-PDMS) lines parallel to the Au lines. Fig.4a shows the final ox-PDMS lines with half-pitch of 7.5 nm formed between Au lines contacting the MoS2 film. Next, the phase transition treatment of the ox-PDMS-patterned MoS2 is applied to selectively convert the uncovered underlying 2H-MoS2 to 1T’-MoS2, while the ox-PDMS-covered regions remain semiconducting. These alternating 2H-MoS2/1T’-MoS2 areas correspond to semiconducting and metallic regions with same length, and form a chain of transistors in series as shown in Fig. 4b. The resulting transistor pitch is equal to the BCP period, 15 nm, with channel length of 7.5 nm. The minimum number of transistors-in-series thus formed between a pair of 120-nm-spaced Au electrodes was 8.

Results and discussion: Fig. 5a shows the I_d-V_g evolution at three fabrication stages of an eventual chain of eight ML-MoS2 FETs with 15 nm pitch. As can be seen, the ML-MoS2 survives the PS etching step and still shows high I_on/I_off modulation. However, current degradation of more than two orders of magnitude is observed as well as higher SS and shifted threshold voltage (V_t) compared with the as-fabricated MoS2-FET. These changes are the consequences of the MoS2 surface being affected by the plasma radicals. The unwanted degradation is nevertheless direct indication that the PS film is fully etched and the gaps between PDMS lines are fully opened. The last I_d-V_g curve in Fig. 5a shows the same device characteristics after phase-transition treatment. Fig 5b shows the final device at different V_d values highlighting the significant increase of I_off at V_d=1 V, which can be attributed to direct source-drain tunneling in the individual FETs. Fig. 6a shows the model fit to the data using the MIT Virtual Source model [6]. The transfer curve below threshold is determined by the MoS2 threshold voltage (~ -1V), gate capacitance (for 4 nm EOT) and carrier velocity (8x10^5 cm/s). Near and above threshold (V_g>0 V), the contact resistance (~20 kΩ.µm) dominates over the channel resistance until the Schottky contact resistance between the Au metal and MoS2 is sufficiently low (~1 kΩ.µm for V_g>2 V). In this regime (V_g>2V), the channel resistance dominates again and the transport is determined by carrier mobility (μ ≈ 8 cm^2/V.s) and series resistance between 1T’/2H MoS2 homojunction (~75 Ω.µm). Fig. 6b shows the predicted transfer characteristics of an idealized single 7.5 nm MoS2 transistor assuming MoS2-metal contact resistance of 100 Ω.µm, and double gate with appropriate work-function and EOT of 0.5 nm leading to a drastically improved SS (62 mV/dec), low DIBL (~20 mV/V) and higher ON current. The carrier velocity and mobility found here from the modeling of the experimental devices are comparable to previously estimated values [7-9]. With the current CVD growth technique, the I_on is 0.1 mA/µm for I_off≈10 pA/µm at V_d=0.5 V (Fig. 6b). Further improvement of carrier velocity is possible with improved film-growth method to meet ITRS requirements for future nodes. Conclusions: We have demonstrated the operation of MoS2 FETs with the shortest and thinnest S/D channel, namely ~7.5 nm long and ~0.7 nm thick, reported to date. The transistor chain shows I_on/I_off=10^5 with I_off≈100 pA/µm. Further improvement of I_on current is possible by improved growth of MoS2 and thus increased carrier velocity and mobility to meet the current requirement for high performance.
MoS₂ FET fabrication

- 90 nm SiO₂ p++ Si wafer
- (i) SiO₂ wet etch by BOE, (ii) ALD HfO₂, (iii) forming gas anneal
- Transfer MoS₂ films from growth substrates onto target substrates
- Au end-contacts and measurement pad metallization

DSA-BCP patterning and phase transition treatment

- Apply hydroxyl terminated PS to the substrate
- Spin coat PS-b-PDMS BCPs blend on the substrate
- Solvent vapor anneal using toluene and acetone vapor
- CF₄ RIE etch to remove the top PDMS wetting layer
- O₂ RIE etch to remove PS matrix
- Immerse PDMS-patterned MoS₂ FET in 2% n-butyl lithium
- n-butyl lithium removal by solvent rinse

Fig. 2. Fabrication process flow of the short channel 1T’/2H MoS₂-FETs patterned by DSA-BCP technique. Step (b) includes ALD-HfO₂ at 200 °C, followed by annealing in a forming gas at 400 °C.

Fig. 4. (a) SEM images show ox-PDMS lines with 15 nm pitch after PS etch on surfaces with no guide pattern as well as surfaces with Au lines as directional guides. The absence of pattern leads to random formations of the ox-PDMS lines while in patterned surface lines are self-assembled in parallel with the Au electrodes. (b) Schematic short channel FET comprised of a 2H-MoS₂ channel contacted to two adjacent metallic 1T’-MoS₂ regions forming S/D contacts.

Fig. 5. (a) Evolutions of Iₘ-Vₖ at Vₙ= 0.5 V of a CVD monolayer MoS₂-FET: As-fabricated (black), after PS etch (red) and final (blue) after phase transition treatment with n-butyl lithium. (b) Iₘ-Vₖ of the final device (8x MoS₂ FETs, Lₙ=7.5 nm) at different Vₖ values.

Fig. 6. (a) MVS fit of the experimental data for the 8 transistor array, high end-contact resistance dominates transport above threshold and limits the Iₘ below 100 µA/µm. (b) Performance prediction of a single transistor with a double-gate structure, EOT of 0.5 nm, and with the same device parameters but assuming excellent contact resistance (100 Ω.µm). Threshold voltage is adjusted to +0.5V for this plot.

Fig. 1. (a) Iₘ-Vₖ of a long-channel MoS₂ FET before and after phase transition treatment. The intrinsic 2H-MoS₂ FET shows strong semiconducting behavior with large gate modulation, while after the phase transition, it shows constant (compliance) current due to metallic 1T’-MoS₂. (b) PL spectra of monolayer 2H- and 1T’-MoS₂: The 2H phase shows a strong PL peak at 1.85 eV, while the PL of the 1T’-phase is absolutely quenched owing to its gapless metallic characteristics.

Acknowledgments: Partial support by the ONR PECASE program and the NSF NEEDS program.

References: