Automatic and scalable fault detection for mobile applications

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1145/2594368.2594377</td>
</tr>
<tr>
<td>Publisher</td>
<td>Association for Computing Machinery</td>
</tr>
<tr>
<td>Version</td>
<td>Author's final manuscript</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/110759</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Creative Commons Attribution-Noncommercial-Share Alike</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td>http://creativecommons.org/licenses/by-nc-sa/4.0/</td>
</tr>
</tbody>
</table>
Automatic and Scalable Fault Detection for Mobile Applications

Lenin Ravindranath
lenin@csail.mit.edu
M.I.T. & Microsoft
Research
Cambridge, MA, USA

Suman Nath
sumann@microsoft.com
Microsoft Research
Redmond, WA, USA

Jitendra Padhye
padhye@microsoft.com
Microsoft Research
Redmond, WA, USA

Hari Balakrishnan
hari@csail.mit.edu
M.I.T.
Cambridge, MA, USA

ABSTRACT

This paper describes the design, implementation, and evaluation of VanarSena, an automated fault finder for mobile applications ("apps"). The techniques in VanarSena are driven by a study of 25 million real-world crash reports of Windows Phone apps reported in 2012. Our analysis indicates that a modest number of root causes are responsible for many observed failures, and that they occur in a wide range of places in an app, requiring a wide coverage of possible execution paths. VanarSena adopts a "greybox" testing method, instrumenting the app binary to achieve both coverage and speed. VanarSena runs on cloud servers: the developer uploads the app binary; VanarSena then runs several app "monkeys" in parallel to emulate user, network, and sensor data behavior, returning a detailed report of crashes and failures. We have tested VanarSena with 3000 apps from the Windows Phone store, finding that 1108 of them had failures; VanarSena uncovered 2969 distinct bugs in existing apps, including 1227 that were not previously reported. Because we anticipate VanarSena being used in regular regression tests, testing speed is important. VanarSena uses two techniques to improve speed. First, it uses a "hit testing" method to quickly emulate an app by identifying which user interface controls map to the same execution handlers in the code. Second, it generates a ProcessingCompleted event to accurately determine when to start the next interaction. These features are key benefits of VanarSena’s greybox philosophy.

1. INTRODUCTION

No one doubts the importance of tools to improve software reliability. For mobile apps, improving reliability is less about making sure that "mission critical" software is bug-free, but more about survival in a brutally competitive marketplace. Because the success of an app hinges on good user reviews, even a handful of poor reviews can doom an app to obscurity. A scan of reviews on mobile app stores shows that an app that crashes is likely to garner poor reviews.

Mobile app testing poses different challenges than traditional "enterprise" software. Mobile apps are typically used in more uncontrolled conditions, in a variety of different locations, over different wireless networks, with a wide range of input data from user interactions and sensors, and on a variety of hardware platforms. Coping with these issues is particularly acute for individual developers or small teams.

There are various approaches for mobile app testing. Static analysis of app binaries [34, 17], although scalable, can fail to uncover app faults due to the runtime issues such as poor network condition and corrupted or unexpected responses from cloud services. Symbolic execution [10] and its hybrid variant, concolic execution, require constructing symbolic model for program execution environment. Although such a model is shown feasible for simple android libraries [37] and UI events [7, 19] of simple apps, applicability of the techniques have been limited for two key reasons. First, it is not easy to model real-world execution environment for mobile apps, consisting of sensors, networks, and cloud services. Second, they do not scale well to real-world apps due to notorious path explosion problem. Recent efforts, therefore, focus on dynamic analysis, where runtime behavior of an app is examined by executing it [41, 16, 8, 31, 35, 32]. We take a similar approach.

Our goal is to develop an easy to use, and scalable system that thoroughly tests mobile apps for common faults. The developer should be able to submit an app binary to the system, and then within a short amount of time obtain a report. This report should provide a correct stack trace and a trace of interactions or inputs for each failure. We anticipate the system being used by developers interactively while debugging, as well as a part of regular nightly and weekly regression tests, so speed is important. An ideal way to deploy the system is as a service in the cloud, so the ability to balance resource consumption and discovering faults is also important.

We describe VanarSena, a system that meets these goals. The starting point in the design is to identify what types of faults have the highest "bang for the buck" in terms of causing real-world failures. To this end, we studied 25 million crash reports from more than 100,000 Windows Phone apps reported in 2012. Three key findings inform our design: first, over 90% of the crashes were attributable to only 10% of the root causes we observed. Second, although the "90-10" rule holds, the root causes affect a wide variety of execution paths in an app. Third, a significant fraction of these crashes can be mapped to externally induced events, such as unhandled HTTP error codes (see §2).

The first finding indicates that focusing on a small number of root causes will improve reliability significantly. The second suggests that the fault finder needs to cover as many execution paths as possible. The third indicates that software emulation of user inputs, network behavior, and sensor data is likely to be effective, even without deploying on phone hardware.
Using these insights, we have developed VanarSena, a system that finds faults in mobile applications. The developer uploads the app binary to the service, along with any supporting information such as a login and password. VanarSena instruments the app, and launches several monkeys to run the instrumented version on phone emulators. As the app is running, VanarSena emulates a variety of user, network and sensor behaviors to uncover and report observed failures.

A noteworthy principle in VanarSena is its “greybox” approach, which instruments the app binary before emulating its execution. Greybox testing combines the benefits of “whitebox” testing, which requires detailed knowledge of an app’s semantics to model interactions and inputs, but isn’t generalizable, and “blackbox” testing, which is general but not as efficient in covering execution paths.

The use of binary instrumentation enables a form of execution-path exploration we call hit testing (§6.1), which identifies how each user interaction maps to an event handler. Hit testing allows VanarSena to cover many more execution paths in a given amount of time. Moreover, app instrumentation makes VanarSena extensible, by inserting our own event handlers that trigger under certain situations, such as network calls and certain user actions. VanarSena can then trap these event handlers to induce specific faults such as emulating slow or faulty networks. We have written several such fault inducers, and more can be easily written. Binary instrumentation also allows VanarSena to determine when to emulate the next user interaction in the app. This task is tricky because emulating a typical user requires knowing when the previous page has been processed and rendered, a task made easier with our instrumentation approach. We call this generation of ProcessingCompleted event (§6.2), which leverages our earlier work on AppInsight [42].

We have implemented VanarSena for Windows Phone apps, running it as an experimental service. We evaluated VanarSena empirically by testing 3,000 apps from the Windows Phone store for commonly-occurring faults. VanarSena discovered failures in 1,108 of these apps, which have presumably undergone some testing and real-world use. Overall, VanarSena detected 2,969 crashes, including 1,227 that were not previously reported. The testing took 4500 machine hours on 12 desktop-class machines, at average of 1.5 hours per app. At current Azure prices, the cost of testing is roughly 25 cents per app. These favorable cost and time estimates result from VanarSena’s use of hit testing and ProcessingCompleted event.

While many prior systems [41, 16, 8, 31, 35] have analyzed mobile apps in various ways by exercising them with automated “monkeys” and by inducing various faults, this paper makes three new research contributions, that have general applicability.

Our first contribution is the study of 25 million crash reports from Windows phone apps (§2). We believe that this is the first study of its kind. The insights from this study anchor the design of VanarSena. Other mobile app testing systems such as Dynodroid [35] can also benefit from these insights. For example, Dynodroid currently does not inject faults due to external factors such as bad networks or event timing related to unexpected or abnormal user behavior. Our study shows that these are among the most common root causes of real-world crashes.

Our second contribution is the technique of hit testing (§6.1). This technique allows VanarSena to speed up testing significantly. Our third contribution is the idea of generation and use of ProcessingCompleted event (§6.2). We show that this is nec-

1 VanarSena in Hindi means an “army of monkeys”.
2 Thus, VanarSena would be even more effective during earlier stages of development.

2. APP CRASHES IN-THE-WILD

To understand why apps crash in the wild, we analyze a large data set of crash reports. We describe our data set, our method for determining the causes of crashes, and the results of the analysis.

2.1 Data Set

Our data set was collected by Windows Phone Error Reporting (WPER) system, a repository of error reports from all deployed Windows Phone apps. When an app crashes due to an unhandled exception, the phone sends a crash report to WPER with a small sampling probability. The crash report includes the app ID, the exception type, the stack trace, and device state information such as the amount of free memory, radio signal strength, etc. We study over 25 million crash reports from more than 100,000 apps collected in 2012. Figure 1 shows the number of crash reports per app. Observe that the data set is not skewed by crashes from handful of bad apps. A similar analysis shows that the data is not skewed by a small number of device types, ISPs, or countries of origin.

2.2 Root Causes of Observed Crashes

To determine the root cause of a crash, we start with the stack trace and the exception type. An exception type gives a general idea about what went wrong, while the stack trace indicates where things went wrong. An example stack fragment is shown in Figure 2. Here, a WebException was thrown, indicating that something went wrong with a web transfer, causing the OnOpenReadCompleted function of the WebClient class to throw an exception. The exception surfaced in the ReadCompleted event handler of the app, which did not handle it, causing the app to crash.

We partition crash reports that we believe originate due to the same root cause into a collection called a crash bucket: each crash bucket has a specific exception type and system function name where the exception was thrown. For example, the crash shown in Figure 2 will be placed in the bucket labeled WebException, System.Net.WebClient.OnOpenReadCompleted.
Given a bucket, we use two techniques to determine the likely root cause of its crashes. First, we use data mining techniques [5] to discover possible patterns of unusual device states (such as low memory or poor signal strength) that hold for all crashes in the bucket. For example, we found that all buckets with label (OutOfMemoryException, *) have the pattern AvailableMemory = 0.

Second, given a bucket, we manually search various Windows Phone developer forums such as social.msdn.microsoft.com and stackoverflow.com for issues related to the exception and the stack traces in the bucket. We limit such analysis to only the 100 largest buckets, as it is not practical to investigate all buckets and developer forums do not contain enough information about less frequent crashes. We learned enough to determine the root causes of 40 of the top 100 buckets. We also manually verified the root causes we determined. The whole process took us around one week.

2.3 Findings

A small number of large buckets cover most of the crashes. Figure 3 shows the cumulative distribution of various bucket sizes. The top 10% buckets cover more than 90% crashes (note the log-scale on the x-axis). This suggests that we can analyze a small number of top buckets and still cover a large fraction of crashes. Table 1 shows several large buckets of crashes.

A significant fraction of crashes can be mapped to well-defined externally-inducible root causes. We use the following taxonomy to classify various root causes. A root cause is deterministically inducible if it can be reproduced by deterministically modifying the external factors on which the app depends. For example, crashes of a networked app caused by improperly handling an HTTP Error 404 (Not Found) can be induced by an HTTP proxy that returns Error 404 on a Get request. Some crashes such as those due to memory faults or unstable OS states are not deterministically inducible. We further classify inducible causes into two categories: device and input. Device-related causes can be induced by systematically manipulating device states such as available memory, available storage, network signal, etc. Input-related causes can be induced by manipulating various external inputs to apps such as user inputs, data from network, sensor inputs, etc.

Table 1 shows several top crash buckets, along with their externally-inducible root causes and their categories. For example, the root causes behind the bucket with label (WebException, WebClient.OnDownloadStringCompleted) are various HTTP Get errors such as 401 (Unauthorized), 404 (Not Found), and 405 (Method Not Allowed), and can be induced with a web proxy intercepting all network communication to and from the app.

We were able to determine externally-inducible root causes of 40 of the top 100 buckets; for the remaining buckets, we either could not determine their root causes from information in developer forums or identify any obvious way to induce the root causes. Together, these buckets represent around 48% of crashes in the top 100 buckets (and 35% of all crashes); the number of unique root causes for these buckets is 8.

These results imply that a significant number of crashes can be induced with a relatively small number of root causes.

Although a small number, the dominant root causes affect many different execution paths in an app. For example, the same root cause of HTTP Error 404 can affect an app at many distinct execution points where the app downloads data from a server. To illustrate how often it happens, we consider all crashes from one particular app in Figure 4 and count the number of distinct stack traces in various crash buckets of the app. The higher the number of distinct stack traces in a bucket, the more the distinct execution points where the app crashed due to the same root cause responsible for the bucket. As shown in Figure 4, for 25 buckets, the number of distinct stack traces is more than 5. The trend holds in general, as shown in Figure 5, which plots the distribution of distinct stack traces in all (app, bucket) partitions. We find that it is common for the same root cause to affect many tens of execution paths of an app.
user transactions mimicked by the tool. In §8.2, we will show that we cover typical apps as thoroughly as a human user.

4. ARCHITECTURE

Figure 8 shows the architecture of VanarSena. VanarSena instruments the submitted app binary. The Monkey manager then spawns a number of monkeys to test the app. A monkey is a UI automation tool built around the Windows Phone Emulator. The monkey can automatically launch the app in the emulator and interact with the UI like a user. When the app is monkeyed, we systematically feed different inputs and emulate various faults. If the app crashes, the monkey generates a detailed crash report for the developer. Figure 9 shows the key components of the monkey.

Emulator: We use an off-the-shelf Windows Phone emulator in our implementation. We intentionally do not modify the emulator in any way. The key benefit of using an emulator instead of device hardware is scalability: VanarSena can easily spin up multiple concurrent instances in a cloud infrastructure to accelerate fault-finding.

Instrumentation: The instrumenter runs over the app binary; it adds five modules to the app as shown in Figure 9. At run-time, these modules generate information needed for the UI Automator and the Fault Inducer ($§$).

UI Automator: The UI Automator (UIA) launches and navigates the instrumented app in the emulator. It emulates user interactions such as clicking buttons, filling textboxes, and swiping. It incorporates techniques to ensure both coverage and speed ($§$).

Fault Inducer: During emulated execution, the Fault Inducer (FI) systematically induces different faults at appropriate points during execution ($§$).

5. INSTRUMENTATION

We use the binary instrumentation framework that we developed in AppInsight [42] to rewrite an app binary. The instrumentation is designed for apps written using the Silverlight framework [40]. Silverlight is used by a vast majority of apps in the Windows Phone app store. In Silverlight, the app is written in C# and XAML [46] and compiled to MSIL byte code [33]. We instrument the app at the byte code level.

In VanarSena, the instrumentation injects five modules into the app that provides the information needed for the UI Automator and the Fault Inducer, as shown in Figure 9. The modules communicate with the UI Automator and the Fault Inducer via local sockets.
6. UI AUTOMATOR

As the UIA navigates through the app, it needs to make two key decisions: what UI control to interact with next, and how long to wait before picking the next control. In addition, because of the design of each monkey instance, VanarSena adopts a “many randomized concurrent monkeys” approach, which we discuss below.

To pick the next control to interact with, the UIA asks the UI Scraper on demand to inspect the current UI.

Hit Test Monitor: We instrument every event handler in the app with a Hit Test Monitor. The Hit Test Monitor helps the UIA to decide which controls to interact with. We describe hit testing in detail in §6.1.

Transaction Tracker: The transaction tracker provides the ProcessingCompleted event used by the UIA to decide when to interact next. We describe transaction tracking in detail in §6.2.

API Interceptors: The instrumenter rewrites the app to intercept certain API calls to proxy through the Fault Inducer. We describe API interceptors and Fault Inducer in detail in §7.

Crash Logger: To identify that an app has crashed, we rewrite the app to subscribe for the unhandled exception handler [18]. The unhandled exception handler is invoked just before the app crashes with an exception that is not handled by the developer. When the handler is invoked, we log the exception and the stack trace associated with it.

6.1 Hit Testing

Hit testing works as follows. The instrumentation framework instruments all UI event handlers in an app with a hit test monitor. It also assigns each event handler a unique ID. Figure 10 shows an example. When hit testing is enabled, interacting with a control will invoke the associated event handler, but the handler will sim-
Figure 10: Event Handlers are instrumented to enable Hit Testing. Handler’s unique id is 12.

Figure 11: Generating ProcessingCompleted event.

The arrows and the associated numbers in Figure 6 shows the result of hit tests on pages. For example, clicking any item on the categories page leads to the same event handler, while clicking on the word “categories” on that page does not invoke any event handler (gray arrow). In fact, the controls on the page lead to just three unique event handlers: clicking on one of the categories leads to event handler 1, clicking on settings leads to handler 2 and swapping on the page leads to handler 3. Note also that several controls on page 1 have no event handlers attached them (gray arrows). By using hit testing, the monkey can focus only on controls that have event handlers associated with them. And from different controls associated with the same event handler, it needs to pick only one\(^4\), thereby significantly reducing the testing time. In §8.2, we will evaluate the impact of hit testing.

We stress that the binding of event handlers to controls can be dynamic, (i.e. it can be changed by the app at run time). Thus static analysis is not sufficient to determine which event handler will be triggered by a given control. This issue has also been raised in [34].

6.2 When to interact next?

Emulating an “open loop” or impatient user is straightforward because the monkey simply needs to invoke event handlers independent of whether the current page has properly been processed and rendered, but emulating a real, patient user who looks at the rendered page and then interacts with it is trickier. Both types of interactions are important to test. The problem with emulating a patient user is that it is not obvious when a page has been completely processed and rendered on screen. Mobile applications exhibit significant variability in the time they take to complete rendering: we show in §8 (Figure 21) that this time could vary between a few hundred milliseconds to several seconds. Waiting for the longest possible timeout using empirical data would slow the monkey down to unacceptable levels.

Fortunately, VanarSena’s greybox binary instrumentation provides a natural solution to the problem, unlike blackbox techniques. The instrumentation includes a way to generate a signal that indicates that processing of the user interaction is complete. (Unlike web pages, app pages do not have a well-defined page-loaded event [45] because app execution can be highly asynchronous. So binary instrumentation is particularly effective here.)

We instrument the app to generate a signal that indicates that processing of the user interaction is complete. We use techniques developed in AppInsight [42] to generate the signal, as follows.

The core ideas in AppInsight are the concept of user transaction, and techniques to track their progress. For example, Figure 11 shows the user transaction [42] for the interaction with “Bars” in Figure 6. The thick horizontal lines represent thread executions, while the dotted lines link asynchronous calls to their corresponding callbacks [42]. When a category (e.g. “Bars”) is clicked on page 1, it calls the associated event handler, which in turn makes an asynchronous call to get GPS location. After obtaining the location, the callback thread makes another asynchronous call to a web server to fetch information about bars near that location. The web callback thread parses the results and initiates a dispatcher call to update the UI with the list of bars. To track this transaction, we instrument the app to add transaction tracker (Figure 9). It monitors the transaction at runtime and generates a ProcessingCompleted event when all the processing (synchronous and asynchronous) associated with an interaction is complete. Two key problems in tracking the transaction are (a) monitoring thread start and ends with minimal overhead, and (b) matching asynchronous calls with their callbacks, across thread boundaries. We address these problems using techniques from AppInsight [42]. The key difference between AppInsight and transaction tracker is that our tracker is capable of tracking the transaction in an online manner (i.e. during execution). In contrast, AppInsight generated logs that were analyzed by an offline analyzer.

6.3 Randomized Concurrent Monkeys

VanarSena uses many simple monkeys operating independently and at random, rather than build a single more complicated and stateful monkey.

Each monkey picks a control at random that would activate an event handler that it has not interacted with in past. For example, suppose the monkey is on page 1 of Figure 6, and it has already clicked on settings previously, then it would choose to either swipe (handler 3), or click one of the businesses at random (handler 1). If no such control is found, the monkey clicks on the back button to travel to the parent page. For example, when on page 3 of Figure 6, the monkey has only one choice (handler 6). If it finds itself back on this page after having interacted with one of the controls, it will click the back button to navigate back to page 2. Pressing the back button in page 1 will quit the app.

Because an app can have loops in its UI structure (e.g. a “Home” button deep inside the app to navigate back to the first page), running the monkey once may not fully explore the app. To mitigate this, we run several monkeys concurrently. These monkeys do not share state, and make independent choices.

Running multiple, randomized monkeys in parallel has two advantages over a single complicated monkey. First, it overcomes the

\(\text{\footnote{In other words, we assume that two controls that lead to same event handler are equivalent. See §6.3 for a caveat.}}\)

\(\text{\footnote{We correctly handle thread waits, sleeps, and timers.}}\)
7. INDUCING FAULTS

The Fault Inducer (FI) is built as an extensible module in which various fault inducing modules (FIM) can be plugged in. The monkey manager configures each monkey to turn on one or more FIMs. The FIMs are triggered by the instrumentation added to the app. The binary instrumentation rewrites the code to intercept calls to specific APIs to proxy them through the appropriate FIM. Figure 13 shows an example. When the call to the HTTP API is made at run-time, it can be proxied through the FIM that mimics web errors. The FIM may return an HTTP failure, garble the response, and so forth.

We built FIMs that help uncover some of the prominent crash buckets in Table 1. The first three intercept API calls and return values that apps may overlook, while the others model unexpected user behavior.

1. **Web errors:** When an app makes a HTTP call, the FIM intercepts the calls and returns HTTP error codes such as 404 (Not Found) or 502 (Bad Gateway, or unable to connect). These can trigger WebExceptions. The module can also intercept the reply and garble it to trigger parsing errors. Parsing errors are particularly important for apps that obtain data from third-party sites. We use Fiddler [3] to intercept and manipulate web requests.

2. **Poor Network conditions:** Brief disconnections and poor network conditions can trigger a variety of network errors, leading to WebExceptions. To emulate these network conditions, we instrument the app to raise an event to the FI just before an impending network transfer. The FI can then emulate different network conditions such as brief disconnection, slow network rate, or long latency. We use a DummyNet-like tool [43] to simulate these conditions.

3. **Sensor errors:** We introduce sensor faults by returning null values and extreme values for sensors such as GPS and accelerometers.

4. **Invalid text entry:** A number of apps do not validate user inputs before parsing them. To induce these faults, the UI and the FI work together. The UI Scraper generates an event to the FI when it encounters a textbox. The FI then informs the UI to either leave the textbox empty, or fill it with text, numbers, or special symbols.

5. **Impatient user:** In §6.2, we described how the UIA emulates a patient user by waiting for the ProcessingCompleted event. However, real users are often impatient, and may interact with the app again before processing of the previous interaction is complete. For example, in Figure 6, an impatient user may click on “Bars” on page 1, decide that the processing is taking too long, and click on the back button to try and exit the app. Such behavior may trigger race conditions in the app code. Table 1 shows that it is the root cause of many crashes. To emulate an impatient user, the transaction tracker in the app raises an event to the FI when a transaction starts, i.e., just after the UIA interacted with a control. To emulate an impatient user, the FIM then instructs the UIA to immediately interact with another specific UI control, without waiting for ProcessingCompleted event. We emulate three distinct impatient user behaviors—clicking on the same control again, clicking on another control on the page, and clicking on the back button.

It is important to be careful about when faults are induced. When a FIM is first turned on, it does not induce a fault on every intercept or event, because it can result in poor coverage. For example, consider testing the AroundMe app (Figure 6) for web errors. If the FIM returns 404 for every request, the app will never populate the list of businesses on page 2, and the monkey will never reach page 3 and 4 of the app. Hence, a FIM usually attempts to induce each fault with some small probability. Because VanarSena uses multiple concurrent monkeys, this approach works in practice.

During app testing, VanarSena induces only one fault at a time: each one instance of the monkey runs with just one FIM turned on. This approach helps us pinpoint the fault that is responsible for the crash. The monkey manager runs multiple monkeys concurrently with different FIMs turned on.
8. EVALUATION

We evaluate VanarSena along two broad themes. First, we demonstrate the usefulness of the system by describing the crashes VanarSena found on 3,000 apps from the Windows Phone Store. Then, we evaluate the optimizations and heuristics described in §6.

To test the system, we selected apps as follows. We bucketized all apps that were in the Windows Phone app store in the first week of April 2013 into 6 groups, according to their rating (no rating, rating \leq 1, \cdots, rating \leq 5). We randomly selected 500 apps from each bucket. This process gives us a representative set of 3,000 apps to test VanarSena with.

We found that 15\% of these apps had a textbox on the first page. These might have required user login information, but we did not create such accounts for the apps we evaluated. So it is possible (indeed, expected) that for some apps, we didn’t test much more than whether there were bugs on the sign-in screen. Despite this restriction, we report many bugs, suggesting that most (but not all) apps were tested reasonably thoroughly. In practice, we expect the developer to supply app-specific inputs such as sign-in information.

8.1 Crashes

We ran 10 concurrent monkeys per run, where each run tests one of the eight fault induction modules from Table 3, as well as one run with no fault induction. Thus, there were 9 different runs for each app, 90 monkeys in all. In these tests, the UIA emulated a patient user, except when the “impatient user” FIM was turned on.

We ran the tests on 12 machines, set up to both emulate Windows Phone 7 and Windows Phone 8 in different tests. Overall, testing 3,000 apps with 270,000 distinct monkey runs took 4,500 machine hours with each app tested for 1.5 hours on average. At current Azure pricing, the cost of testing one app is roughly 25 cents, which is small enough for nightly app tests to be done. The process emulated over 2.5 million interactions, covering over 400,000 pages.

8.1.1 Key Results

Overall, VanarSena flagged 2969 unique crashes\(^6\) in 1108 apps. Figure 14 shows that it found one or two crashes in 60\% of the apps. Some apps had more crashes—one had 17.

Note that these crashes were found in apps that are already in the marketplace; these are not “pre-release” apps. VanarSena found crashes in apps that have already (presumably) undergone some degree of testing by the developer.

Table 2 bucketizes crashed apps according to their ratings rounded to nearest integer values. Note that we have 500 total apps in each rating bucket. We see that VanarSena discovered crashes in all rating buckets. For example, 350 of the no-rating 500 apps crashed during our testing. This represents 31\% of total (1108) apps that crashed. We see that the crash data in WPER for these 3000 apps has a similar rating distribution except for the “no-rating” bucket. For this bucket, WPER sees fewer crashes than VanarSena most likely because these apps do not have enough users (hence no ratings).

8.1.2 Comparison Against the WPER Database

It is tempting to directly compare the crashes we found with the crash reports for the same apps in the WPER database discussed in §2. Direct comparison, however, is not possible because both the apps and the phone OS have undergone revisions since the WPER data was collected. But we can compare some broader metrics.

VanarSena found 1,227 crashes not in the WPER database. We speculate that this is due to two key reasons. First, the database covers a period of one year. Apps that were added to the marketplace towards the end of the period may not have been run sufficiently often by users. Also, apps that are unpopular (usually poorly rated), do not get run very often in the wild, and hence do not encounter all conditions that may cause them to crash. To validate this hypothesis, we examined metadata of the apps in Windows Phone Store. The app store provides information such as rating counts and average rating values of apps, but not their actual downloads or usage counts. However, previous works have pointed out that rating count and download count of apps are strongly correlated and hence a high rating count is a strong indication of a high download count [12]. We found that apps for which VanarSena found these 1,227 crashes have, on average, 3\times fewer reviews (and hence likely fewer downloads) and 10\% worse rating than remaining of the apps we used.

The crashes found by VanarSena cover 16 out of 20 top crash buckets (exception name plus crash method) in WPER, and 19 of the top 20 exceptions. VanarSena does not report any OutOfMemoryException because of the following reason. To collect crashes, VanarSena instruments the unhandled exception handler inside the app. Out of memory is a fatal exception that crashes the app without calling the exception handler. WPER collects crash data at the system level instead of the app level where OutOfMemoryException is logged.

Figure 15 shows another way to compare VanarSena crash data and WPER. For this graph, we consider the subset of WPER crashes that belong to the crash buckets and the apps for which VanarSena found at least one crash. For each bucket, we take the apps that appear in WPER, and compute what fraction of these apps is logged.

Table 2: Number of crashed apps for various ratings

<table>
<thead>
<tr>
<th>Rating value</th>
<th>VanarSena</th>
<th>WPER</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>350 (32%)</td>
<td>21%</td>
</tr>
<tr>
<td>1</td>
<td>127 (11%)</td>
<td>13%</td>
</tr>
<tr>
<td>2</td>
<td>146 (13%)</td>
<td>16%</td>
</tr>
<tr>
<td>3</td>
<td>194 (18%)</td>
<td>15%</td>
</tr>
<tr>
<td>4</td>
<td>185 (17%)</td>
<td>22%</td>
</tr>
<tr>
<td>5</td>
<td>106 (10%)</td>
<td>13%</td>
</tr>
</tbody>
</table>

\(^6\)The uniqueness of the crash is determined by the exception type and stack trace. If the app crashes twice in exactly the same place, we count it only once.

Even “no FIM” detects failures. Table 3 shows the breakdown of crashes found by VanarSena. The first row shows that even without turning any FIM on, VanarSena discovered 506 unique crashes
in 429 apps (some apps crashed multiple times with distinct stack traces; also, the number of apps in this table exceeds 1108 for this reason). The main conclusion from this row is that merely exploring the app thoroughly can uncover faults. A typical exception observed for crashes in this category is the `NullReferenceException`. The table also shows that 239 of these 506 crashes (205 apps) were not in the WPER database.

We now consider the crashes induced by individual FIMs. To isolate the crashes caused by a FIM, we take a conservative approach. If the signature of the crash (stack trace) is also found in the crashes included in the first row (i.e., no FIM), we do not count the crash. We also manually verified a large sample of crashes to ensure that they were actually being caused by the FIM used.

Most failures are found by one or two FIMs, but some apps benefit from more FIMs. Figure 16 shows the number of apps that crashed as a function of the number of FIMs that induced the crashes. For example, 235 apps required no FIM to crash them at all. Most app crashes are found with less than three FIMs, but complex apps fail for multiple reasons (FIMs). Several apps don’t use text boxes, networking, or sensors, making those FIMs irrelevant, but for apps that use these facilities, the diversity of FIMs is useful. The tail of this chart is as noteworthy as the rest of the distribution.

Many apps do not check the validity of the strings entered in textboxes. We found that 191 apps crashed in 215 places due to this error. The most common exception was `FormatException`. We also found web exceptions that resulted when invalid input was proxied from the cloud service backing the app.

Emulating an impatient user uncovers several interesting crashes. Analysis of stack traces and binaries of these apps showed that the crashes fall in three broad categories. First, a number of apps violate the guidelines imposed by the Windows Phone frame-

Figure 15: Coverage of crash buckets in WPER data

Figure 16: FIMs causing crashes

This number is less than 429 (row 1 of Table 3), because some of those 429 apps crashed with other FIMs as well. Unlike Table 3, apps in Figure 16 add up to 1108.
using this feature. Similar changes have been made to camera and GPS APIs. To test whether the apps we selected are susceptible to API changes, we ran them with the emulator emulating WP8. The UIA emulated patient user, and no FIMs were turned on. We found that 8 apps crashed with an RadioDisabledException, while the camera APIs crashed two apps. In total, we found about 221 crashes from 212 apps due to API compatibility issues.

8.2 Monkey Techniques

We now evaluate the heuristics and optimizations discussed in §6. Unless specified otherwise, the results in this section use the same 3000 apps as before. The apps were run 10 times, with no FIM, and the UIA emulated a patient user.

8.2.1 Coverage

We measure coverage in terms of pages and user transactions. We desire that the monkey should cover as much of the app as possible. However, there is no easy way to determine how many unique pages or user transactions the app contains. Any static analysis may undercount the pages and controls, since some apps generate content dynamically. Static analysis may also overestimate their numbers, since apps often include 3rd party libraries that include a lot of pages and controls, only a few of which are accessible to the user at run-time.

Thus, we rely on human calibration to thoroughly explore a small number of apps and compare it to monkey’s coverage. We randomly picked 35 apps and recruited 3 users to manually explore the app. They were specifically asked to click on possible controls and trigger as many unique transactions as possible. We instrumented the apps to log the pages visited and the transactions invoked. Then, we ran the app through our system, with the configuration described earlier.

In 26 out of 35 apps, the monkey covered 100% of pages and more than 90% of all transactions. In five of the remaining nine apps, the monkey covered 75% of the pages. In four apps, the monkey was hampered by the need for app-specific input such as login/passwords and did not progress far. Although this study is small, it gives us confidence that the monkey is able to explore the vast majority of apps thoroughly.

8.2.2 Benefits of Hit Testing

Hit testing accelerates testing by avoiding interacting with non-invokable controls. Among invokable controls, hit testing allows the monkey to interact with only those that lead to unique event handlers.

To evaluate the usefulness of hit testing, we turned off randomization in the UIA, and ran the monkey with and without hit testing once for each app. When running without hit testing, we assume that every control leads to a unique event handler, so the monkey interacts with every control on the page.

Figure 17 shows the ratio of invokable controls and unique event handlers to the total controls in each app. We found that in over half the apps, less than 33% of the total controls in the app were invokable, and only 18% lead to unique event handlers.

Figure 18 shows the time to run apps with and without hit testing. The 90th percentile of the time to run the app once with no fault induction was 365 seconds without hit testing, and only 197 seconds with hit testing. The tail was even worse: for one particular app, a single run took 782 seconds without hit testing, while hit testing reduced the time to just 38 seconds, a 95% reduction.

At the same time, we found that hit testing had minimal impact on app coverage (Figure 19 and Figure 20). In 95.7% of the apps, there was no difference in page coverage with and without hit testing, and for 90% of the apps, there was no difference in transaction coverage either. For the apps with less than 100% coverage, the median page and transaction coverage was over 80%. This matches the observation made in [42]; usually, only distinct event handlers lead to distinct user transactions.

8.2.3 Importance of the ProcessingCompleted Event

When emulating a patient user, the UIA waits for the ProcessingCompleted event to fire before interacting with the next control. Without such an event, we would need to use a fixed timeout. We now show that using such a fixed timeout is not feasible.

Figure 21 shows distribution of the processing time for transactions in the 3000 apps. Recall (Figure 11) that this includes the time taken to complete all processing associated with a current interaction [42]. For this figure, we separate the transactions that involved network calls and those that did not. We also ran the apps while the FIM emulated typical 3G network speeds. This FIM affects only the duration of transactions that involve networking, and the graph shows this duration as well.

The graph shows that processing times of the transactions vary widely, from a few milliseconds to over 10 seconds. Thus, with a small static timeout, we may end up unwittingly emulating an im-
patient user for many transactions. Worse yet, we may miss many UI controls that are populated only after the transaction is complete. On the other hand, with a large timeout, for many transactions, the UIA would find itself waiting unnecessarily. For example, a static timeout of 4 seconds covers 90% of the normal networking transactions, but is unnecessarily long for non-networking transactions. On the other hand, this value covers only 60% of the transactions when emulating a 3G network.

This result demonstrates that using the ProcessingCompleted event allows VanarSena to maximize coverage while minimizing processing time.

8.2.4 Multiple Concurrent Monkeys are Useful

Figure 22 shows the CDF of the fraction of pages covered with 1, 5, and 9 monkeys compared to the pages covered with 10 monkeys. The y-axis is on a log scale. Although 85% of apps need only one monkey for 100% coverage, the tail is large. For about 1% of the apps, new pages are discovered even by the 9th monkey. Similarly, Figure 23 shows that for 5% of the apps, VanarSena continues to discover new transactions even in the 9th monkey.

We did an additional experiment to demonstrate the value of multiple concurrent runs. Recall that we ran each app through each FIM 10 times. To demonstrate that it is possible to uncover more bugs if we run longer, we selected 12 apps from our set of 3000 apps that had the most crashes in WPER system. We ran these apps 100 times through each FIM. By doing so, we uncovered 86 new unique crashes among these apps (4 to 18 in each) in addition to the 60 crashes that we had discovered with the original 10 runs.

9. DISCUSSION AND LIMITATIONS

Why not instrument the emulator? VanarSena could have been implemented by modifying the emulator to induce faults. As a significant practical matter, however, modifying the large and complex emulator code would have required substantially more development effort than our architecture. Moreover, it would require the fault detection software to be adapted to the emulator evolving.

Why cloud deployment? We envision VanarSena as a cloud service for a couple of reasons. First, the cloud offers elastic resources -- i.e., a large number of emulators can be deployed on demand. Second, a cloud-based deployment also makes for easier updates. We can update the monkey in a variety of ways -- e.g., by adding more FIMs based on crash reports from the field, or by using (as yet undiscovered) techniques for improving testing speed or resource consumption. That said, it is easy to envision non-cloud deployment models as well. For example, VanarSena can work by spawning multiple VMs on developer’s desktop (resources permitting), or on a network of local machines. These other deployment scenarios have their own advantages and disadvantages. The fact that monkeys run independently of each other allows for many deployment and pricing models.

Target audience: We envision that VanarSena would be primarily used by amateur developers, or small app shops who lack resources to perform thorough testing of their apps. A majority of apps (on any platform) are developed by such entities. However, note that our evaluation did not focus on only such apps, and we were able to crash so-called professionally developed apps as well. Apart from app developers, VanarSena can also be used by app store owners during app ingestion and approval pipeline to test submitted apps for common faults. The extensibility of the fault inducer, and not requiring source code, are both significant assets in realizing this scenario.

Number of monkeys per app: For results reported in this paper, we ran a fixed number of monkeys for every app. However, we also found that running more monkeys often uncovers more crashes (although we expect that the returns will be diminishing). We also believe that the number of monkeys needed to test an app comprehensively for each fault depends on the complexity of the app. Static analysis of the app should be able to provide some guidance in this matter. We leave this as part of our future work.

Providing inputs in a specific order: Some apps do not make progress until certain inputs are provided in a specific order. For example, log-in button should be clicked only after filling username and password. In VanarSena, we expect developers to provide inputs to textboxes. When the UI Automator discovers textboxes in a page, it fills the textboxes first (with the developer provided input...
or a random value) before hit testing and clicking controls. This helps the UIA to quickly go past login screens. For all other types of inputs, the UIA picks the controls randomly. If an app requires a specific order of interaction, it might be worthwhile to get hints from the developer to save testing time. We are currently exploring how developers can provide such hints easily.

Testing Games: Many games require complex, free-form gestures. Thus, trace replay [21] may be a more appropriate testing strategy on game apps, than randomized monkey actions. Our monkey can easily support trace replay, although collection and validation of such traces is a challenging problem that we plan to address in future. We also note that we cannot test certain other kinds of apps with the current version of VanarSena. Some apps launch other apps (e.g., web browser) and terminate. Testing such apps requires keeping careful track of different app contexts – something which we have not yet implemented. This, however, is an engineering challenge only - not a fundamental one.

Overhead: On average, our instrumentation increases the runtime of transactions by 0.02%. This small overhead is unlikely to affect the behavior of the app.

False Positives: The binary instrumentation may itself be buggy, causing “false positive” crashes. We cannot prove that we do not induce such false positives, but careful manual analysis of crash traces shows that none of the crashes occurred in the code VanarSena added.

Combination of fault inducers: We evaluated apps by injecting one fault at a time to focus on individual faults. In reality, multiple faults may happen at the same time. We plan to investigate this in future.

Improving the SDK: Some of the bugs we have uncovered should be fixed in the platform, instead of in the app. For example, crashes due to violation of simultaneous page navigation could be avoided by redesigning the API.

Beyond Windows Phone: VanarSena currently supports Windows Phone applications. However, its techniques are broadly applicable to mobile apps and can be extended to other platforms. In [42], we have described how the instrumentation framework can be extended to other platforms.

Beyond crashes: We currently focus on app crashes only. However, app developers also typically care about performance of their app [42], under a variety of conditions. Extending VanarSena to do performance testing is the primary thrust of our future work.

10. RELATED WORK

At a high level, VanarSena consists of two components: (1) dynamic analysis with a monkey, and (2) fault injection for app testing. Below we discuss how VanarSena compares with prior works in these two aspects.

Static and dynamic analysis of mobile apps.

Several prior works have statically analyzed app binaries to uncover energy bugs [39, 44], performance problems [30], app plagiarism [13], security problems [17, 23], and privacy leaks [34, 20]. Static analysis is not suitable for our goal of uncovering runtime faults of apps since it cannot capture runtime issues such as poor network condition and corrupted or unexpected responses from cloud services. Several recent works have proposed using a monkey to automatically execute mobile apps for analysis of app’s runtime properties. AppsPlayground [41] runs apps in the Android emulator on top of a modified Android software stack (TaintDroid [15]) in order to track information flow and privacy leaks. Authors evaluate the tool with an impressive 3,968 apps. Recently A’E [8] and Orbit [47] use combinations of static and dynamic analysis to automatically generate test cases to reach various activities of an app. AMC [31] uses a dynamic analysis to check accessibility properties of vehicular apps. It has a UI Automator similar to VanarSena, but unlike our system, it clicks on every control in a given page and waits for a static timeout of 10 seconds before making the next interaction. With hit testing and processing completed event, we believe that VanarSena’s UI Automator would be much faster than AMC’s. Eprof [38] uses dynamic analysis (without a monkey) for fine-grained energy accounting. ProtectMyPrivacy [4] uses the crowd to analyze app privacy settings and to automatically recommend app-specific privacy recommendations. All these works differ by their end goals and specific optimizations. Similarly, VanarSena differ from them in its end goal of uncovering runtime faults of apps and its novel monkey optimization techniques: hit testing and accurate processing completed event. The optimizations are general and can be used for other systems as well. We cannot directly compare the performance of our monkey with the other systems since all of them are for Android apps.

VanarSena uses AppInsight [42] to instrument Windows Phone app binaries. For Android apps, one could use similar frameworks such as SIF [26] and RetroSkeleton [14].

Mobile app testing with a monkey.

As mentioned in Section 1, mobile app testing poses different challenges than traditional “enterprise” software, motivating researchers to develop mobile-specific solutions. Researchers have used Android Monkey [22] for automated fuzz testing [6, 7, 19, 27, 37]. Similar UI automation tools exist for other platforms. VanarSena differs from these tools in two major ways. First, the Android Monkey generates only UI events, and not the richer set of faults that VanarSena induces. Second, it does not optimize for coverage or speed like VanarSena.

One can provide an automation script to the Android Monkey to guide its execution paths, but this approach is not scalable when exploring a large number of distinct execution paths.

Closest to our work is DynoDroid [35] that, like VanarSena, addresses the above problems, but with a different approach: it modifies the Android framework and involves humans at run-time to go past certain app pages (e.g., login screen). Another fundamental difference is that it manipulates only UI and system events and does not inject faults due to external factors such as bad network or event timing related to unexpected or abnormal user behavior, which are among the most common root causes in our real-world crash reports. A’E [8] and Orbit [47] use static and dynamic analysis to generate test cases to traverse different app activities, but do not inject external faults. All these systems could benefit from our crash analysis insights to decide what faults to inject.

ConVirt [32] is a related effort on mobile app testing that it explores the concept of contextual fuzzing. Under contextual fuzzing a variety of real-world environmental and hardware conditions are systematically explored through both real hardware and emulation; these conditions include: user interaction, geo-locations, network conditions, and device/system configurations. To reduce the time in finding app performance problems, ConVirt implements a set of algorithms that leverage inter-app behavioral similarities. Unlike VanarSena, ConVirt takes a blackbox approach and incorporates actual hardware into the testing process. We envision combining ConVirt and VanarSena into a seamless system [11].

Other software testing techniques.

Software testing has a rich history, which cannot be covered in a few paragraphs. We focus only on recent work on mobile app testing, which falls into three broad categories: fuzz testing, which generates random inputs to apps; symbolic testing, which tests an app by symbolically executing it; and model-based testing. Fuzz testing is done with a monkey and is discussed above.
As mentioned in Section 1, symbolic execution [29, 10, 37] and its hybrid variant, concolic execution [7, 28] have found limited success in testing real-world apps due to path explosion problem and difficulty in modeling real-world execution environment with network, sensors, and cloud.

“GUI ripping” [36, 25, 6] systems and GUITAR [24] use model-based testing to mobile apps. Unlike VanarSena, it requires developers to provide a model of the app’s GUI and can only check faults due to user inputs. Applicability of these techniques has so far been very limited (e.g., evaluated with a handful of “toy” apps only).

Comparison to AppInsight: VanarSena leverages the instrumentation framework and other techniques developed for AppInsight [42]. However, the goals of VanarSena and AppInsight are very different. Developers use AppInsight to collect analytics, performance and crash data from mobile apps running “in the wild” – i.e. being used by real users. Thus, AppInsight does not include emulator, UI Automator or fault inducer. On the other hand, VanarSena is meant for catching bugs in the app before it is released to end users. Indeed, the development of VanarSena was motivated by our experience with AppInsight and feedback from developers who used it. We found that while AppInsight helped the developers fix bugs in subsequent releases of the app, it was sometimes “too late”. Users of mobile apps can be quite unforgiving – once an app gets a poor rating due to crashes, few download subsequent “fixed” versions. The key goal of VanarSena is to detect the common faults in the app before it is released.

11. CONCLUSION

VanarSena is a software fault detection system for mobile apps designed by gleanings insights from an analysis of 25 million crash reports. VanarSena adopts a “greybox” testing method, instrumenting the app binary to achieve both high coverage and speed, using hit testing and generation of ProcessingCompletedEvent. We found that VanarSena is effective in practice. We tested it on 3000 apps from the Windows Phone store, finding that 1108 of them had failures. VanarSena uncovered over 2969 distinct bugs in existing apps, including over 1227 that were not previously reported. Each app was tested, on average, in just 1.5 hours. Deployed as a cloud service, VanarSena can provide a automated testing framework to mobile software reliability even for amateur developers who cannot devote extensive resources to testing.

Acknowledgments

We thank the MobiSys reviewers and our shepherd, Zhiyun Qian, for several useful comments and suggestions that improved this paper. We also thank Felix Xiaozhu Lin and Jessica Miller for their support during VanarSena development. LR and HB were supported in part by the National Science Foundation under Grant 0931508 and the MIT Center for Wireless Networks and Mobile Computing (Wireless@MIT).

12. REFERENCES