Early Onset of Kinetic Roughening due to a Finite Step Width in Hematin Crystallization

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

<table>
<thead>
<tr>
<th>Citation</th>
<th>Olafson, Katy N. et al. "Early Onset of Kinetic Roughening due to a Finite Step Width in Hematin Crystallization." Physical Review Letters 119, 19 (November 2017): 198101 © 2017 American Physical Society</th>
</tr>
</thead>
<tbody>
<tr>
<td>As Published</td>
<td>http://dx.doi.org/10.1103/PhysRevLett.119.198101</td>
</tr>
<tr>
<td>Publisher</td>
<td>American Physical Society</td>
</tr>
<tr>
<td>Version</td>
<td>Final published version</td>
</tr>
<tr>
<td>Accessed</td>
<td>Wed Mar 13 03:55:27 EDT 2019</td>
</tr>
<tr>
<td>Citable Link</td>
<td>http://hdl.handle.net/1721.1/112615</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.</td>
</tr>
<tr>
<td>Detailed Terms</td>
<td></td>
</tr>
</tbody>
</table>
Early Onset of Kinetic Roughening due to a Finite Step Width in Hematin Crystallization

Katy N. Olafson,1,3,4 Jeffrey D. Rimer,1,2,* and Peter G. Vekilov1,2,†

1Department of Chemical and Biomolecular Engineering, University of Houston, 4726 Calhoun Road, Houston, Texas 77204-4004, USA
2Department of Chemistry, University of Houston 3585 Cullen Blvd, Houston, Texas 77204-5003, USA
3Department of Chemical Engineering, David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
4Department of Anesthesiology, Boston Children’s Hospital, Boston, Massachusetts 02115, USA

(Received 23 March 2017; published 7 November 2017)

The structure of the interface of a growing crystal with its nutrient phase largely determines the growth dynamics. We demonstrate that hematin crystals, crucial for the survival of malaria parasites, transition from faceted to rough growth interfaces at increasing thermodynamic supersaturation \(\Delta \mu \). Contrary to theoretical predictions and previous observations, this transition occurs at moderate values of \(\Delta \mu \). Moreover, surface roughness varies nonmonotonically with \(\Delta \mu \), and the rate constant for rough growth is slower than that resulting from nucleation and spreading of layers. We attribute these unexpected behaviors to the dynamics of step growth dominated by surface diffusion and the loss of identity of nuclei separated by less than the step width \(w \). We put forth a general criterion for the onset of kinetic roughening using \(w \) as a critical length scale.

DOI: 10.1103/PhysRevLett.119.198101

Crystallization is an example of a highly nonequilibrium process, in which the flows of mass and energy are governed by dynamic structures comprising a two-dimensional interface between adjacent three-dimensional semispaces; it is also a crucial part of innumerable natural and commercialized processes [1–4]. During crystal growth, the structure of its interface with the growth medium dictates the molecular mechanism of solute incorporation, the response of the growth dynamics to temperature and composition gradients, the action of impurities and dopants, and, ultimately, the crystal perfection [5,6]. Crystals growing from a melt are typically nonfaceted. Such interfaces are denoted as rough and exhibit a high density of growth sites, referred to as kinks [Fig. 1(a)] [5]. In contrast, the interfaces of most crystals growing from dilute media, such as solutions, follow the lattice planes and are molecularly smooth. Kink sites are rare and located along steps comprising the edges of unfinished crystal layers [Fig. 1(b)] [7]. The generation of kinks and the transport of solute to these sites are major factors governing crystallization, leading to growth rates slower by orders of magnitude than those for rough growth [5,8–13].

In equilibrium and at low supersaturation, the selection between a rough and a smooth interface is dictated by the ratio of the crystal bond strength \(\psi \) to the thermal energy \(k_B T \) (\(k_B \), Boltzmann constant; \(T \), temperature) [14,15]. The parameter \(\psi \), in turn, is proportional to the latent heat of crystallization \(\Delta H_{\text{cryst}} \) [16]. For melt crystallization, typical \(\Delta H_{\text{cryst}} \) values (and the corresponding \(\psi \)) are low and the temperatures are high [17], whereas \(\Delta H_{\text{cryst}} \) and \(\psi \) for growth from a solution are higher and \(T \) is constrained by the boiling point of the solvent. Numerous classical models relate \(\psi/k_B T < 1 \) to rough interfaces and \(\psi/k_B T > 1 \) to faceted crystals [18–20].

FIG. 1. Rough and smooth crystal interfaces, illustrated in (a) and (b), respectively. A kink is highlighted in red and a step edge in blue. (c)–(f) Steady-state morphology of (100) hematin faces, imaged in phase mode, at four hematin concentrations \(c_H \) and corresponding supersaturations \(\Delta \mu/k_B T \). At low \(c_H \) and \(\Delta \mu \), in (c), hematin crystals grow by the generation and spreading of layers. At higher \(c_H \) and \(\Delta \mu \) in (d)–(f), the surface is rough.
Interfaces that are smooth at equilibrium may become rough during growth at elevated supersaturation [21,22]. We observed a smooth to rough transition [Figs. 1(c)–1(f)] during the growth of hematin crystals from a biomimetic mixed organic-aqueous solvent [23–25]; for experiment details, see Supplemental Material [26]. Hematin crystallization is the main pathway employed by malaria parasites to sequester toxic hematin, released during hemoglobin digestion [31]; its inhibition is considered the most successful target for antimalarial drugs [32]. Here, we use in situ atomic force microscopy (AFM) to show that the transition occurs at a supersaturation significantly lower than that predicted by published criteria [9,10,14,22,33–36]. We demonstrate that the transition is controlled by the balance between nucleation of new layers and their coalescence into smooth surfaces. We highlight the significance of solute incorporation into kinks from the surface (and not directly from the solution) for the early onset of kinetic roughness.

Previous observations of hematin crystals in undersaturated and moderately supersaturated conditions have revealed that they are faceted with smooth faces and grow by layers, generated by two-dimensional (2D) nucleation, which then spread and merge to cover the surface [Fig. 1(c)] [24,37]. The smooth surface agrees with the predictions of the above criteria for the interface structure of crystals near equilibrium with the solution. The latent heat of crystallization is \(\Delta H_{\text{cryst}}^{\text{iso}} = -37 \) kJ mol\(^{-1}\) [24]. The hematin crystal structure [38] in Supplemental Material [26] implies that the coordination number of the hematin molecules in the crystal is \(Z = 8 \). The mean \(\psi = 2|\Delta H_{\text{cryst}}^{\text{iso}}|/ZN_A \approx 3.8k_BT \) (\(N_A \), Avogadro’s number). At \(\Delta \mu > 0.8k_BT \) (the definition of \(\Delta \mu \) is discussed in Supplemental Material [26]), the surface becomes rough [Fig. 1(d)], and this roughness is preserved at \(\Delta \mu \) as high as 1.48 \(k_BT \) [Figs. 1(e) and 1(f)].

Criteria for the onset of kinetic roughening include vanishing \(R_b \) (critical radius of the 2D nucleus) and the corresponding barrier for 2D nucleation, \(\Delta G^* \), at high supersaturation [9,10,35–37]. According to the classical nucleation theory (CNT), applied to 2D islands on a crystal substrate [39], island nuclei form as a result of fluctuations of the concentration of molecules on the surface. Islands of radius \(R \) illustrated in Fig. 2(a), smaller than \(R_b \) are more likely to dissolve, whereas those exceeding \(R_b \) have a high probability to grow. The dependence \(R_b(\Delta \mu) \) is governed by the Gibbs-Thomson relation, according to which \(R_b = \Omega \gamma / \Delta \mu \) (where \(\gamma \) is the surface free energy of the step edge and \(\Omega \) is the volume of one molecule in the crystal) [5]. In turn, \(R_b \) relates to \(\Delta G^* = \pi \gamma R_b h \), where \(h \) is the layer thickness, often equal to one lattice parameter \(a \). If \(\Delta G^* \) falls below the thermal energy \(k_BT \), nucleation of new layers is barrier-free (analogous to spinodal decomposition) and induces a rough growth interface.

Individual criteria diverge in their identification of the processes that cause a decrease in \(\Delta G^* \) and \(R_b \). Several authors postulate vanishing \(\gamma \) at high \(\Delta \mu \) due to high step configurational entropy induced by fast solute association [9,34], akin to the vanishing \(\gamma \) between liquids and gases at the critical point [5,40]. The elevated entropy compensates for the enthalpy contribution to \(\gamma \) if \(\psi < 2.5k_BT \), which corresponds to \(\Delta H_{\text{cryst}}^{\text{iso}} < 18 \) kJ mol\(^{-1}\) for the assumed Kossel crystal structure [34]. This mechanism does not apply to the roughening transition observed in Fig. 1, because \(\Delta H_{\text{cryst}}^{\text{iso}} \) for hematin is significantly higher than this limit. Other criteria predict kinetic roughening if \(R_b \) is reduced below a threshold length at high \(\Delta \mu \). Two characteristic length scales have been put forth: the correlation length of the step contour \(\xi \), illustrated in Fig. 2(b), or the size of one solute molecule \(a \) [10,35,36].

Under specific conditions, surfaces may be covered by trains of parallel steps [Fig. 2(b)]. The criteria that treat roughening transitions on such surfaces predict the onset of surface roughness at supersaturation where the interstep separation \(\ell \) becomes shorter than the step correlation length \(\xi \) [14] or the step width \(w \) [Fig. 2(b)] [5]. Trains of parallel steps have not been observed on growing hematin crystals [24,37]. Irrespective of the roughening mechanism, it is generally accepted that, owing to a consistently increasing 2D nucleation rate in the regime of rough growth, the interface roughness will increase monotonically with supersaturation [6,13,22]. Furthermore, it is expected that rough surfaces grow with significantly higher rate constants than smooth surfaces [8,11–13].

![FIG. 2. Hematin surface roughness. (a),(b) Schematics of kinetic roughening at increasing supersaturation \(\Delta \mu \) by (a) denser 2D nucleation and (b) higher step density in a step train. The radius of a 2D island \(R \) is illustrated in (a) and a step width \(w \), interstep separation \(\ell \), and correlation length \(\xi \) in (b). (c),(f) The distribution of the mean squared roughness \(R_q \) for 100 \(\times \) 100 nm\(^2\) areas at four \(\Delta \mu \) values, corresponding to the images in Figs. 1(c)–1(f). (g) Average \(R_q \) computed from the data in (c)–(f) as a function of \(\Delta \mu \). The range of rough growth is shaded in gray.](image-url)
To elucidate the mechanism of kinetic roughening, we quantified the surface roughness of hematin interfaces represented in Figs. 1(c)–1(f). We evaluated the root mean squared roughness R_q within surface segments of area Σ [Figs. 2(c)–2(f)]. The smooth surface in Fig. 1(c) reveals mostly R_q values corresponding to the presence of one or two steps in the sampled surface segment [Fig. 2(c)]. The rough surfaces in Figs. 1(d)–1(f) exhibit height differences of up to 4.5 nm, indicating a large disparity in heights of the analyzed profiles [Figs. 2(d)–2(f)]. Surprisingly, R_q averaged over all sampled surfaces passes through a maximum and reaches, at high supersaturations, values that are lower than those for a smooth interface at $\Delta \mu = 0.32 k_BT$ in Fig. 1(c). Statistical analysis reveals that this nonmonotonic trend is independent of Σ, as discussed in Supplemental Material [26].

Decreasing R_q with increasing $\Delta \mu$ contradicts theoretical predictions [6,22] and previous experimental observations [12,13,42]. It is not a consequence of limited imaging resolution, since the pixel size on the images in Figs. 1(c)–(f) is about 3 nm, close to the hematin molecular size of 1.2 nm [37]. Moreover, AFM tip curvature artifacts do not constrain the resolution for objects with surface height variations < 5 nm [43,44], and the highest observed height variation in the profiles used to calculate R_q is 4.5 nm. The decreasing $R_q(\Delta \mu)$ trend suggests that the characteristic length scale of the surface decreases after the onset of roughening, in direct contradiction with the models correlating roughening with vanishing ΔG^* and R_c, in which the characteristic length scale of a rough surface is a [45–48].

To further test the applicability of these models to hematin growth, we correlate the observed kinetic roughening [Figs. 1(c)–1(f) and 2(c)–2(g)] with the $R_c(\Delta \mu)$ dependence. For the highly anisotropic hematin crystals [37,38], we define R_c as an azimuthally averaged half-width of the 2D nuclei and determine it from observations of the size and shape fluctuations of newly nucleated islands, as illustrated in Figs. 3(a)–3(f) [24]. The $R_c(\Delta \mu)$ data comply remarkably well with the prediction of the Gibbs-Thomson relation using $\Omega = 0.708$ nm3 [38] and $\gamma = 23$ mJ m$^{-2}$, independently determined using the Turnbull rule [49] and ΔH_{cryst} [24] [Fig. 3(g)]. In Supplemental Material [26], we demonstrate that this γ represents an azimuthal average and justify its relation with R_c via the Gibbs-Thomson law. Extrapolating the $R_c(\Delta \mu)$ dependence reveals that at the onset of roughening, at $\Delta \mu = 0.80 k_BT$, $R_c \cong 4$ nm. Recognizing that the surface area per molecule is ca. 0.5 nm2, an island of such radius would contain approximately 100 molecules. Creating such islands would require a significant free energy expense. This conclusion excludes vanishing ΔG^* as a mechanism of kinetic roughening. Furthermore, steps on hematin (100) faces exhibit relatively long straight segments [Figs. 1(c) and 3(h)], indicating that the step correlation length ξ may be of the order of tens of nanometers, thus eliminating the relation $R_c < \xi$ as a viable threshold for roughening.

Here, we put forth an alternative mechanism of surface roughening at elevated supersaturations. We assume that the surface would be rough if two conditions are met. First, 2D nuclei are separated by distances shorter than the step width w (finite w reflects step contour fluctuations due to the creation and annihilation of kinks, which stabilize the step via increased entropy [5,14,18]). Such a high nuclei density hinders the distinction between steps and terraces and the identification of individual crystal layers [50]. Second, the preservation of roughness during growth requires that the layers spread and merge within time scales longer than those needed for the formation of nuclei belonging to the next crystal layer. The characteristic time of the former process is w/v, and that of the latter is $(Jw^2)^{-1}$ (where J is the rate of 2D nucleation of new crystal layers and v is the step velocity) [5,20,51,52]. The surface will be rough when $(Jw^2)^{-1} < w/v$ (or $Jw^3/v > 1$) and smooth when $Jw^3/v < 1$. Determinations of J and v from in situ AFM reveal that, at $\Delta \mu = 0.32 k_BT$, $J \approx 10^{13}$ m$^{-2}$ s$^{-1}$ and v of closely spaced steps is about 0.05 nm s$^{-1}$ [24,37]. The step width w is about 5 nm [Fig. 3(h)], yielding $Jw^3/v \approx 0.02$. This corresponds to a smooth interface, as seen in Fig. 1(c).

In compliance with the CNT, J increases exponentially with $\Delta \mu$ and reaches a value of 3.5×10^{14} m$^{-2}$ s$^{-1}$ at $\Delta \mu = 0.58 k_BT$ [37]. We extrapolate J to a value of 10^{15} m$^{-2}$ s$^{-1}$ at $\Delta \mu = 0.80 k_BT$. For steps separated by more than 180 nm, v increases linearly with c_H [24,37]. Previous experiments...
have demonstrated that the pathway of hematin molecules from the solution to kinks includes a state of adsorption on the terraces between steps and 2D diffusion towards the kinks [37]. The competition for nutrient supply between adjacent steps retards \(v \), as observed for two steps separated by about 50 nm and growing towards each other [Figs. 4(a)–4(e)], with average \(v \approx 0.05 \text{ nm s}^{-1} \). Under identical conditions, steps separated by more than 180 nm move with \(v \approx 0.12 \text{ nm s}^{-1} \) [24]. At step separations \(\ell \) shorter than 180 nm, the \(v(c_H) \) correlation exhibits a plateau at \(v \approx 0.05 \text{ nm s}^{-1} \), as demonstrated in Supplemental Material [26][37]. At this approximate value of \(v \), the relation \(JW_s/v \approx 1 \) signifies the onset of kinetic roughening at \(\Delta \mu = 0.80k_BT \).

To elucidate the consequences of surface roughening on the normal growth rate \(V \) of a crystal, we consider the face kinetic coefficient \(\beta_{\text{face}} \), defined from the correlation \(V = \beta_{\text{face}}(c_H - c_e) \) [Fig. 4(f)]. This \(\beta_{\text{face}} \) is proportional to the effective first-order rate constant \(k \) for the incorporation of hematin molecules into crystals \(\beta_{\text{face}} = ak \). Surprisingly, \(\beta_{\text{face}} \) for rough growth is comparable to that at very low supersaturations, where growth is constrained by slow \(J \). At intermediate supersaturations, where \(J \) is fast, \(\beta_{\text{face}} \) for smooth growth is significantly faster than that in the rough regime, in direct contradiction to numerous theoretical predictions [5,8–10] and previous experimental observations [11–13,53]. The slow \(V \) in the rough regime, which occurs despite the rapid nucleation of new layers, is likely due to the slow velocity \(v \) of step spreading.

On a smooth interface, the surface diffusion pathway is selected, because it induces a significantly faster growth rate (\(V \) and \(v \)) than the alternative direct incorporation of solute into kinks [54]. During rough growth, when the characteristic surface length scale is comparable to the molecular size, terraces are rendered unavailable for solute adsorption, and direct incorporation is the only pathway from the solution to the kinks. This pathway reduces \(\beta_{\text{face}} \) below values observed for layer-by-layer growth. The somewhat larger \(\beta_{\text{face}} \) at \(c_H = 0.40 \text{ mM} \) (where \(\Delta \mu = 0.92k_BT \)) is consistent with islands separated by terraces of width \(w \), which allow solute adsorption on terraces followed by surface diffusion to incorporate into step sites. The availability of surface incorporation pathways leads to faster \(v \) and \(V \). The incorporation pathway through adsorption on the surface enables two additional unexpected behaviors discussed above. The early onset of roughening at supersaturations where \(R_c \) is large and the maximum in \(R_q \) are both due to the weak \(v(c_H) \) dependence associated with this pathway, leading to a steep increase of the ratio \(Jw^3/v \) to values above 1 at moderate \(\Delta \mu \).

Published observations of kinetic roughening with the proteins lysozyme and glucose isomerase [13,53], which grow via a similar solute incorporation pathway, are consistent with the proposed transition scenario. In lysozyme growth, step retardation occurs at \(\ell \approx 2 \mu m = 600a \) [55], indicating a more pronounced step supply field overlap than with hematin [13]. Correspondingly, the surface roughens at \(\Delta \mu = 0.4k_BT \) [13], about half the value for hematin. The surface free energy is about 0.5 mJ m\(^{-2} \) [56], and, with \(\Omega = 2 \times 10^{-26} \text{ m}^3 \), \(R_c \) reaches \(a = 3.5 \text{ nm} \) at about \(\Delta \mu = 0.6k_BT \). Hence, surface roughness should increase at values \(\Delta \mu \) greater than this latter threshold, in agreement with reported observations [13]. With glucose isomerase, step retardation was minimal and recorded at separations <70 nm \(\approx 7a \) [57]. In combination with a slow increase of \(J \) with \(\Delta \mu \), fast \(v \) leads to roughening at \(\Delta \mu = 5.0k_BT \), which coincides with where \(\Delta G^* \) vanishes [53].

In summary, we show that hematin crystals transition into a rough growth regime at less than expected supersaturations. The early onset of roughening is enabled by the surface diffusion mechanism, which results in a slower step velocity at the shorter interstep distances at high supersaturation. Slow layer spreading reveals the surface roughens at length scales significantly longer than those for a vanishing
nucleation barrier, which are assumed to be the trigger for kinetic roughening in the majority of published models. We propose that the interface roughens when the spacing between island nuclei falls below the step width and slow island growth hinders the merging of layers. A numerical criterion based on this scenario accurately predicts the hematin roughening transition and is consistent with available data for two other recently studied crystalline materials.

The slow β'_{face} in the rough growth regime may relate to the high efficacy of antimalarial drugs that inhibit hematin layer growth [58,59]. After the cessation of layer-by-layer growth due to drug action, the accumulation of hematin, continuously released by hemoglobin digestion [60], would force the system into rough growth, as illustrated in Supplemental Material [26]. It is feasible that the roughening of the crystal surface removes the preferred adsorptions sites of the drugs and allows crystallization to proceed uninhibited. If β'_{face} for rough growth were greater than that for faceted growth, the accumulated toxic hematin would be consumed, preventing the demise of the parasite [61]. Slow β'_{face} by contrast, supports a continued increase of c_H to values above the toxic level, as schematically illustrated in Supplemental Material [26], and contributes to the effectiveness of the drugs.

We thank E. Vlieg for helpful discussions and suggestions. This work was supported by National Institutes of Health (NIH) (Grant No. 1R21AI126215-01), National Science Foundation (NSF) (DMR-1710354), National Aeronautics and Space Administration (NASA) (NNX14AD68G and NNX14AE79G), and The Welch Foundation (Grant No. E-1794).

*Corresponding author.
*Corresponding author.

