Study of $[\text{subscript } b]$ meson production in $p \, p$ collisions at $s = 7$ and 8TeV and observation of the decay $[\text{subscript } b]$ (3P) (3S)[subscript]

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.
Study of χ_b meson production in pp collisions at $\sqrt{s} = 7$ and 8 TeV and observation of the decay $\chi_b(3P) \rightarrow \Upsilon(3S)\gamma$

The LHCb Collaboration
CERN, 1211 Geneva 23, Switzerland

Received: 30 July 2014 / Accepted: 22 September 2014 / Published online: 8 October 2014
© CERN for the benefit of the LHCb collaboration 2014. This article is published with open access at Springerlink.com

Abstract A study of χ_b meson production at LHCb is performed on proton–proton collision data, corresponding to 3.0 fb$^{-1}$ of integrated luminosity collected at centre-of-mass energies $\sqrt{s} = 7$ and 8 TeV. The fraction of $\Upsilon(nS)$ mesons originating from χ_b decays is measured as a function of the Υ transverse momentum in the rapidity range $2.0 < y^\Upsilon < 4.5$. The radiative transition of the $\chi_b(3P)$ meson to $\Upsilon(3S)$ is observed for the first time. The $\chi_{b1}(3P)$ mass is determined to be

$$m_{\chi_{b1}(3P)} = 10511.3 \pm 1.7 \pm 2.5 \text{ MeV}/c^2,$$

where the first uncertainty is statistical and the second is systematic.

1 Introduction

The production of quarkonia states in high-energy hadron collisions is described in the framework of non-relativistic quantum chromodynamics (NRQCD), as a two-step process: a heavy quark–antiquark pair is first created perturbatively at short distances, then it evolves non-perturbatively into quarkonium at long distances. The NRQCD framework makes use of a combination of colour-singlet and colour-octet mechanisms [1–5]. Recent calculations [6–10] support the leading role of the colour-singlet mechanism. The comparison of experimental data for prompt production of S-wave quarkonia, e.g. J/ψ or $\Upsilon(1S)$ mesons, with theory predictions requires knowledge of feed-down contributions from P-wave quarkonia states, e.g. radiative $\chi_b \rightarrow \Upsilon\gamma$ decays. This contribution could significantly influence the interpretation of the measured polarization of S-wave vector quarkonia. In addition, measurements of the relative production rates of P-wave to S-wave quarkonia, as well as the tensor-to-vector ratios, provide valuable information on colour-octet matrix elements [10–12].

The production of P-wave charmonia, jointly referred to as X_c states, has been studied by the CDF [13], HERA-B [14], LHCb [15–17], CMS [18], and ATLAS [19] collaborations; measurements involving χ_b states have been performed by the CDF [20], ATLAS [21], CMS [22] and LHCb [23,24] experiments.

This paper presents a measurement of the fractions of Υ mesons originating from radiative decays of χ_b mesons. Depending on the relative orientation of the quark spins, the χ_b states can be either scalar, vector or tensor mesons, denoted by χ_{b1} with total angular momentum $J = 0, 1, 2$. The fractions of $\Upsilon(nS)$ decays originating from $\chi_b(mP)$ decays, where n and m are radial quantum numbers of the bound states are defined as

$$R_{\Upsilon(nS)}^{\chi_b(mP)} = \frac{\sigma(pp \rightarrow \chi_{b1} (mP)X)}{\sigma(pp \rightarrow \Upsilon(nS)X)} \times B_1 + \frac{\sigma(pp \rightarrow \chi_{b2} (mP)X)}{\sigma(pp \rightarrow \Upsilon(nS)X)} \times B_2,$$

where $B_1(2)$ denotes the branching fraction for the decay $\chi_{b1(2)}(mP) \rightarrow \Upsilon(nS)\gamma$. Possible contributions from $\chi_{b0}(mP) \rightarrow \Upsilon(nS)\gamma$ decays are neglected because of the small branching fraction for the corresponding radiative decays [25].

The results presented in this paper supersede earlier LHCb measurements [23,24]. In particular, the full data sample collected by LHCb at $\sqrt{s} = 7$ and 8 TeV has been used and the measured fractions $R_{\Upsilon(nS)}^{\chi_b(mP)}$ are reported for all six kinematically allowed transitions: $\chi_b(1P) \rightarrow \Upsilon(1S)\gamma$, $\chi_b(2P) \rightarrow \Upsilon(2S)\gamma$, $\chi_b(3P) \rightarrow \Upsilon(3S)\gamma$, $\chi_b(2P) \rightarrow \Upsilon(2S)\gamma$, $\chi_b(3P) \rightarrow \Upsilon(3S)\gamma$ and $\chi_b(3P) \rightarrow \Upsilon(3S)\gamma$ in bins of transverse momentum of the Υ mesons in the rapidity range $2.0 < y < 4.5$. The last transition, which is usually not considered in theory predictions, is observed for the first time. A precise measurement of the mass of the $\chi_{b1}(3P)$ meson, which was recently observed by the ATLAS [21], D0 [26] and LHCb [24] collaborations, is also performed.

2 The LHCb detector and data samples

The LHCb detector [27] is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, ...
A comparison of the distributions of the relevant variables particles with the detector and its response are implemented with the hard trigger, with the specific requirement that the product of which applies a full event reconstruction. Calorimeter and muon systems, followed by a software stage, identified by a system composed of alternating layers of iron and multiwire proportional chambers. The trigger consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction.

Candidate events used in this analysis must pass the hardware trigger, with the specific requirement that the product of the p_T of two muon candidates be greater than $(1.3 \text{ GeV}/c)^2$ and $(1.6 \text{ GeV}/c)^2$ for data collected at $\sqrt{s} = 7$ and 8 TeV, respectively. The first stage of the software trigger selects candidate events with two well-reconstructed tracks with hits in the muon system, p_T greater than 500 MeV/c and momentum greater than 6 GeV/c for each track. The two tracks are required to originate from a common vertex and to have an invariant mass greater than 2.7 GeV/c2. Events are required to pass a second software trigger stage, where the previous trigger decision is confirmed using improved track reconstruction algorithms, and the requirement that the invariant mass of the dimuon pair exceeds 4.7 GeV/c2 is applied.

The data samples used in this paper have been collected by the LHCb detector in pp collisions at $\sqrt{s} = 7$ and 8 TeV with integrated luminosities of 1.0 fb$^{-1}$ and 2.0 fb$^{-1}$, respectively. Simulated samples are used to determine signal efficiencies. In these samples, Υ and χ_b mesons are produced unpolarized. The effect of the unknown initial polarization on the efficiencies, and therefore on the results, is taken into account as a systematic uncertainty. In the simulation, pp collisions are generated using PYTHIA [32] with a specific LHCb configuration [33]. Decays of hadrons are described by EVTGEN [34], in which final-state radiation is generated using PHOTOS [35]. The interaction of the generated particles with the detector and its response are implemented using the GEANT4 toolkit [36,37] as described in Ref. [38]. A comparison of the distributions of the relevant variables used in this analysis is performed on data and simulated samples, in order to assess the reliability of the simulation in computing signal efficiencies and good agreement is found.

3 Event selection and signal extraction

This analysis proceeds through the reconstruction of Υ(nS) candidates via their dimuon decays and their subsequent pairing with a photon candidate to reconstruct $\chi_b \rightarrow \Upsilon \gamma$ decays. The Υ candidates are selected from pairs of oppositely charged tracks identified as muons and originating from a common vertex. The muons are required to have p_T larger than 1 GeV/c. Good track quality is ensured by requiring a χ^2 per degree of freedom, χ^2/ndf, of the track fit to be less than 4 [39]. A multivariate estimator, based on information from the tracking, muon and RICH systems, as well as compatibility with the hypothesis of a minimum ionizing particle in the calorimeter system [40–42], is used to improve the muon identification purity. The identification efficiency for muons from $\Upsilon \rightarrow \mu^+ \mu^-$ decays rises from 75 % to 98 % as the transverse momentum of the muon increases from 1 GeV/c to 3 GeV/c. A good quality of the two-prong common vertex is ensured by requiring the p-value of the common vertex fit to be greater than 0.5 %. To improve the dimuon mass resolution and to suppress combinatorial background from muons originating in semileptonic decays of heavy-flavoured hadrons, the dimuon vertex is refitted using the position of the reconstructed pp collision vertex as an additional constraint [43]. The p-value for this fit is required to be larger than 0.05 %. When several collision vertices are reconstructed in the event, the one closest to the dimuon vertex is used.

The invariant mass distributions for selected dimuon candidates in the kinematic range of transverse momentum $6 < p_T^{\mu^+ \mu^-} < 40$ GeV/c and rapidity $2.0 < y^{\mu^+ \mu^-} < 4.5$ are shown in Fig. 1 for data collected at $\sqrt{s} = 7$ and 8 TeV. Three clear peaks are visible, corresponding to the $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ signals (low-mass to high-mass). The yields of the Υ(nS) signals are determined using an extended maximum likelihood fit to the unbinned dimuon mass distributions. The fit function is parameterised as the sum of three signal components and combinatorial background. Each Υ signal has been modelled with a modified Gaussian function with power-law tails on both sides. The combinatorial background is modelled with an exponential function. The tail parameters of the signal functions are fixed using simulated events, whereas the mean and resolution are allowed to vary in the fit. The fit results are superimposed in Fig. 1 and fitted signal yields are summarized in Table 1. The peak positions and mass resolutions are found to be in good agreement for the data collected at $\sqrt{s} = 7$ and 8 TeV,
be greater than 600 MeV. SPD detectors. The photon transverse energy is required to is further refined by using information from the PS and track extrapolated to the calorimeter. The photon selection must not be associated with the position of any reconstructed candidate photon clusters constructed from variables that rely on calorimeter and track-combined with photons reconstructed using the electromagnetic uranium for (left) data collected at $\sqrt{s} = 7$ TeV and (right) 8 TeV. The three peaks on each plot correspond to the $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ signals (low-mass to high-mass). The result of the fit, described in the text, is illustrated with a red solid line, while the background component is shown with a blue dashed line.

Fig. 1 Invariant mass distributions for selected dimuon candidates in the kinematic range $6 < p_T^{\mu+\mu^-} < 40$ GeV/c and $2.0 < y^{\mu+\mu^-} < 4.5$ for (left) data collected at $\sqrt{s} = 7$ TeV and (right) 8 TeV. The three peaks on each plot correspond to the $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ signals (low-mass to high-mass). The result of the fit, described in the text, is illustrated with a red solid line, while the background component is shown with a blue dashed line.

Table 1 Yields of $\Upsilon(nS)$ mesons, determined by fitting the dimuon invariant mass in the range $6 < p_T^{\mu+\mu^-} < 40$ GeV/c and $2.0 < y^{\mu+\mu^-} < 4.5$, for data collected at $\sqrt{s} = 7$ and 8 TeV. Only statistical uncertainties are shown.

<table>
<thead>
<tr>
<th>Signal yield</th>
<th>$\sqrt{s} = 7$ TeV</th>
<th>$\sqrt{s} = 8$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{\Upsilon(1S)}$</td>
<td>326300 ± 638</td>
<td>747610 ± 969</td>
</tr>
<tr>
<td>$N_{\Upsilon(2S)}$</td>
<td>100620 ± 395</td>
<td>229950 ± 576</td>
</tr>
<tr>
<td>$N_{\Upsilon(3S)}$</td>
<td>57613 ± 312</td>
<td>129450 ± 459</td>
</tr>
</tbody>
</table>

and in agreement with the known $\Upsilon(nS)$ masses [25] and the resolutions expected from simulated samples.

Muon pairs with invariant mass in the intervals $9310 < m^{\mu+\mu^-} < 9600$ MeV/c^2, $9860 < m^{\mu+\mu^-} < 10 155$ MeV/c^2 and $10 220 < m^{\mu+\mu^-} < 10 520$ MeV/c^2 are used as $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ candidates, respectively, when reconstructing χ_b particles. The selected Υ candidates are combined with photons reconstructed using the electromagnetic calorimeter and identified using a likelihood-based estimator, constructed from variables that rely on calorimeter and tracking information [16,29,44,45]. Candidate photon clusters must not be associated with the position of any reconstructed track extrapolated to the calorimeter. The photon selection is further refined by using information from the PS and SPD detectors. The photon transverse energy is required to be greater than 600 MeV.

The χ_b signals are searched for in the invariant mass of $\Upsilon(1S)$ combinations. To improve the $\Upsilon(nS)\gamma$ mass resolution and to remove any residual bias, the corrected mass

$$m_{\Upsilon(nS)\gamma} \equiv m_{\mu^+\mu^-} - (m_{\mu^+\mu^-} - m_{\Upsilon(nS)})$$

(2)

is used, where $m_{\Upsilon(nS)}$ is the known mass of the $\Upsilon(nS)$ meson [25]. The resolution improves by a factor between two and four with respect to the one obtained by simply computing the invariant mass of the $\Upsilon\gamma$ pair. The distributions of the corrected masses $m_{\Upsilon(nS)\gamma}$ are shown in Fig. 2 for $\Upsilon(1S)$, $\Upsilon(2S)$ and $\Upsilon(3S)$ candidates in the transverse momentum ranges $14 < p_T^{\Upsilon(1S)} < 40$ GeV/c, $18 < p_T^{\Upsilon(2S)} < 40$ GeV/c and $24 < p_T^{\Upsilon(3S)} < 40$ GeV/c.

The yields of χ_b (mP) mesons are determined from an extended maximum likelihood fit to the unbinned $m_{\Upsilon(nS)\gamma}$ distributions. The fit model consists of the sum of signal components for all kinematically allowed χ_b (mP) $\rightarrow \Upsilon(nS)\gamma$ decays and combinatorial background. Neglecting a possible contribution due to χ_{b0} (mP) $\rightarrow \Upsilon(nS)\gamma$ decays, the signal from each χ_b (mP) multiplet is parameterised as the sum of two overlapping Crystal Ball (CB) functions [46] with high-mass tails. The peak positions are separated by the known mass-splitting between the tensor and vector states in each χ_b (1P) and χ_b (2P) multiplets [25]. For the χ_b (3P) multiplet the expected splitting of 10.5 MeV/c^2 [47,48] is used. The tail parameters of the CB functions and the resolutions are fixed to the values determined using simulated samples. The yield fractions $N_{\chi_{b2}}/N_{\chi_{b1}}$ of the tensor and vector states in each χ_b (mP) multiplet are assumed to be equal to 0.5 according to expectations from Refs. [11,47]. For the $\chi_b (1P)$ and $\chi_b (2P)$ cases, this choice agrees with direct measurements of the relative productions of χ_{b2} (1P)/χ_{b1} (1P) and χ_{b2} (2P)/χ_{b1} (2P) [22,49]. This assumption is necessary for the determination of signal yields, since the χ_{b1} and χ_{b2} states cannot be resolved given the limited invariant mass resolution for the $\Upsilon(nS)\gamma$ system. The impact of this assumption is quantified as a systematic uncertainty. With this parameterisation for the twelve χ_b signal components, the free parameters are the three masses of the χ_{b1} states and the six overall yields of χ_{b1} and χ_{b2} signals. The com-
Table 2

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>√s = 7 TeV</th>
<th>√s = 8 TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_{3P^{(1S)}} \rightarrow \Upsilon(nS)</td>
<td>1908 ± 71</td>
<td>4608 ± 115</td>
</tr>
<tr>
<td>N_{3P^{(2S)}} \rightarrow \Upsilon(nS)</td>
<td>390 ± 41</td>
<td>904 ± 68</td>
</tr>
<tr>
<td>N_{\chi_b(3P)} \rightarrow \Upsilon(nS)</td>
<td>133 ± 31</td>
<td>196 ± 50</td>
</tr>
<tr>
<td>N_{\chi_b(3P)} \rightarrow \Upsilon(nS)</td>
<td>265 ± 30</td>
<td>660 ± 46</td>
</tr>
<tr>
<td>N_{\chi_b(2P)} \rightarrow \Upsilon(nS)</td>
<td>48 ± 17</td>
<td>73 ± 26</td>
</tr>
<tr>
<td>N_{\chi_b(3P)} \rightarrow \Upsilon(nS)</td>
<td>56 ± 12</td>
<td>126 ± 20</td>
</tr>
</tbody>
</table>

Each plot shows also the result of the fit (solid red curve), including the background (dotted blue curve) and the signal (dashed green and magenta curves) contributions. The magenta dashed curve corresponds to the χ_b signal and the green dashed curve to the χ_{b1} signal.
where $\varepsilon_{X_b}(mP)$ and $\varepsilon_{\Upsilon(nS)}$ denote the total efficiencies, and $N_{X_b}(mP)$ and $N_{\Upsilon(nS)}$ are the fitted yields for the $X_b(mP)$ and $\Upsilon(nS)$ states for the respective p_T^{Υ} bin. The ratio of the efficiencies $\varepsilon_{X_b}(mP)$ and $\varepsilon_{\Upsilon(nS)}$ is largely determined by the reconstruction efficiency for photons from X_b decays. It is close to 25% for X_b mesons with transverse momentum larger than 20 GeV/c, and it drops to approximately 10% for the lowest p_T considered in this analysis. The dominant sources of inefficiency are the geometrical acceptance of the electromagnetic calorimeter, photon conversions in the detector material, the accidental overlap of clusters in the ECAL and the selection requirement on the photon transverse energy. The measurements are performed in six bins of $p_T^{\Upsilon(1S)}$ in the range $6 < p_T^{\Upsilon(1S)} < 40$ GeV/c, five bins of $p_T^{\Upsilon(2S)}$ in the range $18 < p_T^{\Upsilon(2S)} < 40$ GeV/c and two bins of $p_T^{\Upsilon(3S)}$ in the range $24 < p_T^{\Upsilon(3S)} < 40$ GeV/c.

Table 3: Summary of the relative systematic uncertainties for the fractions $R_{X_b}(mP)$

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T fit model</td>
<td>0.7</td>
</tr>
<tr>
<td>X_b fit model</td>
<td></td>
</tr>
<tr>
<td>X_{b1}/X_{b2} ratio</td>
<td>0.1–15</td>
</tr>
<tr>
<td>X_{b1} mass variation</td>
<td>0.3–20</td>
</tr>
<tr>
<td>X_b mass resolution</td>
<td>2.0–12</td>
</tr>
<tr>
<td>Background model</td>
<td>2.0–10</td>
</tr>
<tr>
<td>$m_{X_{b2}(3P)} - m_{X_{b1}(3P)}$</td>
<td>0.1–2</td>
</tr>
<tr>
<td>γ reconstruction</td>
<td>3.0</td>
</tr>
<tr>
<td>X_b polarization</td>
<td>0.9–9</td>
</tr>
</tbody>
</table>

Table 4: Summary of systematic uncertainties for $m_{X_{b1}}(3P)$

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (MeV/c²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_b fit model</td>
<td></td>
</tr>
<tr>
<td>X_b mass resolution</td>
<td>0.8</td>
</tr>
<tr>
<td>Background model</td>
<td>0.3</td>
</tr>
<tr>
<td>$m_{X_{b2}(3P)} - m_{X_{b1}(3P)}$</td>
<td>0.4</td>
</tr>
<tr>
<td>X_{b1}/X_{b2} ratio</td>
<td>2.0</td>
</tr>
<tr>
<td>ECAL energy scale</td>
<td>1.0</td>
</tr>
<tr>
<td>$\Upsilon(3S)$ mass uncertainty</td>
<td>0.5</td>
</tr>
</tbody>
</table>

4 Systematic uncertainties

The systematic uncertainties on the fractions $R_{X_b}(mP)$, calculated using Eq. (3), are related to the determination of the signal yields and the evaluation of the efficiency ratios. The main contributions to the former are due to fit modelling, whereas the photon reconstruction efficiency and the knowledge of the initial state polarization dominate the uncertainty on the ratios of efficiencies $\varepsilon_{X_b}(mP)/\varepsilon_{\Upsilon(nS)}$. The contributions due to other effects largely cancel in these ratios.

Based on studies from Refs. [23,50–52] the systematic uncertainty associated with the Υ signal yields determination is taken to be 0.7% for all p_T^{Υ} bins.

In the X_b fit model several sources of uncertainty are taken into account. The yield ratio $N(X_{b2})/N(X_{b1})$, which is fixed in the fit to be 0.5 as predicted by theory, is varied from 0.3 to 1.0. These limits are obtained by following the prescription of Ref. [11], where the experimentally measured cross-section ratio of X_c mesons is rescaled to predict the corresponding ratio for X_b mesons. The ratio of cross-sections is then converted to a ratio of yields by taking into account the X_{b1} and X_{b2} radiative branching fractions and reconstruction efficiencies. For the $X_b(1P)$ and the $X_b(2P)$ mesons, the variation obtained agrees within uncertainties with the direct measurements of relative productions of $X_{b2}(1P)$ and $X_{b1}(1P)$ mesons and $X_{b2}(2P)$ and $X_{b1}(2P)$ mesons [49]. The corresponding systematic uncertainty on $R_{X_b}(mP)$ varies between 0.1% and 15% across p_T^{Υ} bins. The systematic uncertainty due to a slight dependence of the mass fit results on p_T^{Υ} is estimated by taking the minimum and the maximum values of the X_{b1} masses, repeating the fit and taking the maximum difference in the yields. The assigned uncertainty varies between 0.3% and 20% for various p_T^{Υ} bins. The smaller values correspond to the low-Q transitions: $X_b(1P) \rightarrow \Upsilon(1S)\gamma$, $X_b(2P) \rightarrow \Upsilon(2S)\gamma$ and $X_b(3P) \rightarrow \Upsilon(3S)\gamma$. To assess the systematic uncertainty related to possible mismodelling of the mass resolution, the mass resolution is varied by $\pm 10\%$ around the values obtained using simulated samples, and the difference between the obtained $R_{X_b}(mP)$ is treated as the corresponding systematic uncertainty. The maximum deviation in the results obtained from varying by ± 1 the order of the polynomial function used in the fit model to describe the combinatorial background, is assigned as the systematic uncertainty associated with the background parameterisation. For the $X_b(3P)$ case, a systematic uncertainty stems from the assumption on the mass splitting between $X_{b2}(3P)$ and $X_{b1}(3P)$ states. This parameter is varied in the range between 9 and 12 MeV/c². The obtained uncertainty for $R_{X_b}(3P)$ is found to be much smaller than the one obtained for $R_{X_b}(2P)$. The assigned uncertainty on $R_{X_b}(3P)$ varies between 0.1% and 2%.

The uncertainty due to possible imperfections in the simulation in the determination of the photon reconstruction efficiency is studied by comparing the relative yields between data and simulation for $B^+ \rightarrow J/\psi K^{*+}$ and $B^+ \rightarrow J/\psi K^+$ decays, where the K^{*+} meson is reconstructed using the $K^+\pi^0$ final state [23,45,53–55]. According to these studies, a systematic uncertainty of 3% is assigned for...
photons in the kinematical range considered in this analysis. This uncertainty is dominated by the knowledge of the ratio of the branching fractions for $B^+ \to J/\psi K^{*+}$ and $B^+ \to J/\psi K^+$ decays.

Another source of systematic uncertainty is associated with the unknown polarization of χ_b and Υ states. The polarization of Υ mesons for $p_T^{\Upsilon} > 10 \text{ GeV}/c$ and in the central rapidity region $|y^{\Upsilon}| < 1.2$ has been found to be small by the CMS collaboration [56]. Therefore in this paper we assume zero polarization of Υ mesons and no systematic uncertainty is assigned due to this effect. The systematic uncertainty related to the unknown polarization of χ_b mesons was estimated following Refs. [14,17]. For each p_T^{Υ} bin, the ratios of efficiencies E_{χ_b1}/E_{Υ} and E_{χ_b2}/E_{Υ} are recomputed using various possible polarizations scenarios for χ_b1 and χ_b2 mesons. The maximum deviation of the efficiency ratio with respect to the one obtained with unpolarized production of χ_b1 and χ_b2 states is taken as the systematic uncertainty. The assigned uncertainty on $R_{\chi_b}^{(mP)}$ varies between 0.9 % and 9 % for various p_T^{Υ} bins.

Systematic uncertainties due to external experimental inputs, e.g. the Υ mass or the mass splitting of $\chi_b(1P)$ and $\chi_b(2P)$ multiplets, are negligible. The systematic uncertainties on the $R_{\Upsilon}^{(mP)}$ measurements are summarized in Table 3. Systematic uncertainties on the measurement of the $\chi_b(3P)$ mass are due to the ECAL energy scale, the fit model and the $\Upsilon(3S)$ mass [25]. The first of these is studied by comparing the reconstructed invariant mass of photons in $\pi^0 \to \gamma\gamma$ decays with the known mass of the neutral pion [57–59], which gives an uncertainty of $1.0 \text{ MeV}/c^2$ in $\chi_b(3P) \to \Upsilon(3S)\gamma$ decays. The effects of possible mis-modelling of the mass resolution and background models are found to be $0.8 \text{ MeV}/c^2$ and $0.3 \text{ MeV}/c^2$, respectively. Other significant contributions to the systematic uncertainty are related to the assumptions on $N(\chi_b2)/N(\chi_b1)$, and to the mass splitting between χ_b multiplet components. The effect of the unknown value for the mass-splitting is tested by varying $m_{\chi_b2}(3P) - m_{\chi_b1}(3P)$ in a range between 9 and 12 MeV/c^2, preferred by theory [47,48]; the obtained deviation of 0.4 MeV/c^2 is assigned...
as the corresponding systematic uncertainty. The χ_{b1} (3P) mass exhibits a linear dependence on the assumed fraction of χ_{b1} decays and varies from 10.509 to 10.513 MeV/c^2, when the χ_{b2} / χ_{b1} yield ratio changes from 0.3 to 1.0. The determination of the χ_{b1} (3P) mass is further checked using the large χ_b (1P) $\rightarrow \Upsilon$(1S)γ signal, where the measured χ_{b1} (1P) mass agrees with the known χ_{b1} (1P) mass [25] to better than 0.5 MeV/c^2, separately for $\sqrt{s} = 7$ and 8 TeV data. No additional systematic uncertainty is assigned. The systematic uncertainties on the χ_{b1} (3P) mass measurement are summarized in Table 4.

5 Results and conclusion

The measured fractions $R^{\Upsilon}_{Y(nS)}$ are presented in Fig. 3 and Tables 5 and 6. The results are dominated by the statistical uncertainties, and show no dependence on the pp collision energy. A measurement of the $R^{\Upsilon}_{Y(3S)}$ fraction is performed for the first time. The large value of this fraction impacts the interpretation of experimental data on Υ production and polarization. When data on Υ production and polarization are compared with theory predictions, as well as when different theory predictions are compared among themselves, it is often implicitly assumed that the fraction of Υ (3S) mesons produced by feed down from higher states is small. The large measured value of $R^{\Upsilon}_{Y(3S)}$ indicates that these assumptions need to be revisited.

In conclusion, the fractions of Υ mesons originating from χ_b radiative decays are measured using a data sample collected by LHCb at centre-of-mass energies of 7 and 8 TeV, as a function of the Υ transverse momentum in the kinematic range $2.0 < y^{\Upsilon} < 4.5$. The results presented in this paper
supersede previous LHCb measurements [23] by increasing the statistical precision and exploiting more decay modes and higher transverse momentum regions. The measurement of the $\Upsilon(3S)$ production fraction due to radiative $\chi_b(3P)$ decays is performed for the first time. Assuring the mass splitting $m_{\chi_{b2}}(3P) - m_{\chi_{b1}}(3P) = 10.5\text{MeV}/c^2$, the mass of $\chi_{b1}(3P)$ state is measured to be

$$m_{\chi_{b1}}(3P) = 10511.3 \pm 1.7 \pm 2.5\text{MeV}/c^2,$$

where the first uncertainty is statistical and the second systematic. This result is compatible and significantly more precise than the event yield average mass of $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ states of $10\,530 \pm 5 \pm 17\text{MeV}/c^2$ and $10\,551 \pm 14 \pm 17\text{MeV}/c^2$, reported by the ATLAS [21] and D0 [26] experiments, respectively.

Acknowledgments We thank K.-T. Chao, H. Han, V. G. Kartvelishvili, J.-P. Lansberg, A. K. Likhoded, A. V. Luchinsky, S. V. Poslavsky and H.-S. Shao for inspiring and fruitful discussions on P-wave bottomonia production. We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We appreciate support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); NSFC (China); CNRIS/IN2P3 (France); BMBF, DFG, HGF and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); MNISW and NCN (Poland); MEN/IFA (Romania); MinES and FANO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (USA). The Tier1 centres are supported by IN2P3 (France), KIT and BMBF (Germany), INFN (Italy), NWO and SURF (The Netherlands), PIF (Spain), GridPP (United Kingdom). We are indebted to the communities behind the multiple open source software packages on which we depend. We are also thankful for the computing resources and the access to software R&D tools provided by Yandex LLC (Russia). Individual groups or members have received support from EPLANET, Marie Sklodowska-Curie Actions and ERC (European Union), Conseil général de Haute-Savoie, Labex ENIGMASS and OCEVU, Région Auvergne (France), RFBR (Russia), XuntaGal and GENCAT (Spain), Royal Society and Royal Commission for the Exhibition of 1851 (United Kingdom).

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. Funded by SCOAP3 | License Version CC BY 4.0.

References

17. LHCb collaboration, R. Aaij et al., Measurement of the relative rate of prompt χ_c0, χ_c1 and χ_c2 production at $\sqrt{s} = 7\text{TeV}$. JHEP 10, 115 (2013). arXiv:1307.4285.
22. CMS collaboration, Measurement of the χ_b2/χ_b1 production cross section ratio in pp collisions at $\sqrt{s} = 8\text{TeV}$ (2013) (CMS-PAS-BPH-13-005).
24. LHCb collaboration, Observation of $\chi_b(3P)$ state at LHCb in pp collisions at $\sqrt{s} = 7\text{TeV}$ (LHCb-CONF-2012-020).
27. LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC. JINST 3, S08005 (2008).
33. I. Belyaev et al., Handling of the generation process in GAUSS, the LHCb simulation framework, in Nuclear Science Symposium Conference Record (NSS/MIC), vol. 1155 (IEEE, 2010)

The LHCb Collaboration

33 Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia
34 Budker Institute of Nuclear Physics (SB RAS) and Novosibirsk State University, Novosibirsk, Russia
35 Institute for High Energy Physics (IHEP), Protvino, Russia
36 Universitat de Barcelona, Barcelona, Spain
37 Universidad de Santiago de Compostela, Santiago de Compostela, Spain
38 European Organization for Nuclear Research (CERN), Geneva, Switzerland
39 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
40 Physik-Institut, Universität Zürich, Zurich, Switzerland
41 Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands
42 Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands
43 NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine
44 Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine
45 University of Birmingham, Birmingham, UK
46 H.H. Wills Physics Laboratory, University of Bristol, Bristol, UK
47 Cavendish Laboratory, University of Cambridge, Cambridge, UK
48 Department of Physics, University of Warwick, Coventry, UK
49 STFC Rutherford Appleton Laboratory, Didcot, UK
50 School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
51 School of Physics and Astronomy, University of Glasgow, Glasgow, UK
52 Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK
53 Imperial College London, London, UK
54 School of Physics and Astronomy, University of Manchester, Manchester, UK
55 Department of Physics, University of Oxford, Oxford, UK
56 Massachusetts Institute of Technology, Cambridge, MA, USA
57 University of Cincinnati, Cincinnati, OH, USA
58 University of Maryland, College Park, MD, USA
59 Syracuse University, Syracuse, NY, USA
60 Pontificia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to
61 Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated to
62 Institut für Physik, Universität Rostock, Rostock, Germany, associated to
63 National Research Centre Kurchatov Institute, Moscow, Russia, associated to
64 Instituto de Fisica Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain, associated to
65 KVI-University of Groningen, Groningen, The Netherlands, associated to
66 Celal Bayar University, Manisa, Turkey, associated to

a Universidade Federal do Triângulo Mineiro (UFTM), Uberaba, MG, Brazil
b P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
c Università di Bari, Bari, Italy
d Università di Bologna, Bologna, Italy
e Università di Cagliari, Cagliari, Italy
f Università di Ferrara, Ferrara, Italy
g Università di Firenze, Firenze, Italy
h Università di Urbino, Urbino, Italy
i Università di Modena e Reggio Emilia, Modena, Italy
j Università di Genova, Genoa, Italy
k Università di Milano Bicocca, Milan, Italy
l Università di Roma Tor Vergata, Rome, Italy
m Università di Roma La Sapienza, Rome, Italy
n Università della Basilicata, Potenza, Italy
o Faculty of Computer Science, Electronics and Telecommunications, AGH-University of Science and Technology, Kraków, Poland
p LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
q Hanoi University of Science, Hanoi, Vietnam
f Università di Padova, Padua, Italy
s Università di Pisa, Pisa, Italy
i Scuola Normale Superiore, Pisa, Italy
u Università degli Studi di Milano, Milan, Italy